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Abstract

This thesis presents a knowledge-based solution for retrieving English de-
scriptions for objects, such as images, in a collection. Based on detailed
analysis of the errors made by a baseline system relying on surface-level fea-
tures (i.e. term frequency), we infer that an ideal solution to this problem
should use deeper representations of the meaning encoded in textual descrip-
tions.

Applied Textual Inference (ATI) as used in this thesis refers to the class of
generic task-based evaluations that address this need. ATI tasks are challenge
problems. Because they are intended to drive research on text understanding,
the problems are designed to be hard enough to require reasoning. However in
order to support cross-site comparisons of results, the problems are evaluated
at the surface level. Examples include recognizing textual entailment (RTE),
paraphrasing, summarization, word-replacement, and some types of question
answering (QA).

This thesis frames the problem of image description retrieval as an in-
stance of ATI, and demonstrates how an inference engine and a set of sym-
bolic knowledge resources in the form of ontologies can improve performance
on this task, as measured by Mean Reciprocal Rank.

In the process, we describe the results of several sub-tasks: Introduce an
image retrieval task supported by a data set containing over 50,000 images,
hand-labeled with multiple descriptions; present a series of parameterizations
for calculating the similarity between two descriptions; identify classes of
error in a keyword-driven baseline system and use these classes to inform a set
of knowledge-based improvements; implement and evaluate the knowledge-
based approach.

The success of shared tasks for ATI in the last decade indicates growth
in the field of Natural Language Understanding, and in particular a grow-
ing interest in deep text representations that can be leveraged by modern
machine learning frameworks. The work of this thesis contributes to better
understanding of why deep representations are necessary, and how they may
be effectively applied.
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Eric Nyberg, Vibhu Mittal, and Bruce Porter. They have persevered with
me and continued to invest their time and energy in this work beyond what
I could have expected from them.

Thanks to Luis von Ahn and Laura Dabbish, who ingeniously gathered
the data set I used in most of my experiments.

Thank you to my classmates at CMU who have all experienced the unique
mixture of pride and pain that this effort exacts: Kathrin, Joy, Paul, Kornel,
Guy, Arthur, Stephanie, Rosie, Ari, Vasco, Ashish, Yan, Ben, and many,
many more. Thank you to Stacy Young and to all of the staff at the LTI,
who were able and flexible in following 7 years’ worth of bread crumbs, which
I blithely scattered on my way to getting this degree. Thank you to Stephan
Vogel and to Alex Waibel for giving me responsibilities early in my graduate
career that helped me to grow.

Also to my collaborators and friends at the Tsujii Laboratory at the Uni-
versity of Tokyo, who taught me so much and set such wonderful examples
for me: Ohta-san, Kim-san, Rune, Kano-san, Miyao-san, and all of the stu-
dents and researchers. And during the final stretch of this effort I have had
still another amazing team to inspire me: thank you to Andre Valente and
Lewis Johnson, founders of Alelo, where I have worked for almost two years
now while finishing my dissertation. They saw my success as their success
from the moment we started working together, which is a common thread
among all of these treasured relationships.

Thank you to my family and their families: Hal, Suzie, Scottie, Beth,
Paul, Amy, Jerry, Angela, Toshiro, Yuli, Mali, Andre, and Brian. I know
this journey was long for you, too.

Finally thank you to my husband Kenji, who assured me that this process
would be painful but that it would end happily. Thank you for helping me



4

endure the first and believe in the second.
All remaining inaccuracies and omissions in this work are my own.
The research reported here was supported in part by the Defense Ad-

vanced Research Projects Agency (DARPA) under contract NBCHD030010.
Any opinions, findings, and conclusions expressed here are those of the author
and do not necessarily reflect the views of the sponsors.



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1 Introduction 15
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 Applied Textual Inference (ATI) . . . . . . . . . . . . . . . . 16
1.3 Current Approaches . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4 Retrieving Object Descriptions . . . . . . . . . . . . . . . . . 17

1.4.1 Retrieving Images . . . . . . . . . . . . . . . . . . . . . 18
1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Related Work 23
2.1 Applied Textual Inference with Semantic Distance . . . . . . . 23
2.2 Knowledge Acquisition and Development . . . . . . . . . . . . 25
2.3 Ad-Hoc Retrieval and Question Answering . . . . . . . . . . . 25
2.4 Image Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 A Corpus for Description Retrieval 31
3.1 The Phetch Data Set . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Comparable Data Sets . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Establishing Corpus Sections . . . . . . . . . . . . . . . . . . 34
3.4 Logical Document Structure . . . . . . . . . . . . . . . . . . . 36
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Understanding Image Descriptions 39
4.1 The Language of Descriptions . . . . . . . . . . . . . . . . . . 39

5



6 CONTENTS

4.1.1 Syntactic Patterns . . . . . . . . . . . . . . . . . . . . 39
4.1.2 Semantic and Rhetorical Patterns . . . . . . . . . . . . 40

4.2 The Commonness of Descriptions . . . . . . . . . . . . . . . . 44
4.2.1 An Uncurated Data Sample from Flickr.com . . . . . . 44
4.2.2 Syntactic Patterns . . . . . . . . . . . . . . . . . . . . 47
4.2.3 Semantic and Rhetorical Patterns . . . . . . . . . . . . 47

4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Parameterizations and Baseline Results 51
5.1 Retrieval with Keywords . . . . . . . . . . . . . . . . . . . . . 51

5.1.1 Focused Retrieval . . . . . . . . . . . . . . . . . . . . . 52
5.1.2 Indexing and Retrieval Tools . . . . . . . . . . . . . . 53
5.1.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Additional Parameterizations . . . . . . . . . . . . . . . . . . 58
5.2.1 Keyword Refinements . . . . . . . . . . . . . . . . . . . 59
5.2.2 Synonyms and Semantic Expansion Terms . . . . . . . 60
5.2.3 Dependency Relations . . . . . . . . . . . . . . . . . . 61
5.2.4 Knowledge-Augmented Dependency Relations . . . . . 62

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Classifying Errors 67
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2 Counting Retrieval Errors . . . . . . . . . . . . . . . . . . . . 67

6.2.1 Retrieval Failures . . . . . . . . . . . . . . . . . . . . . 68
6.2.2 Estimating Bounds on Improvement . . . . . . . . . . 70
6.2.3 Additional Data . . . . . . . . . . . . . . . . . . . . . . 73

6.3 Classifying Retrieval Errors . . . . . . . . . . . . . . . . . . . 73
6.3.1 Classes of Precision Error . . . . . . . . . . . . . . . . 76
6.3.2 Classes of Recall Error . . . . . . . . . . . . . . . . . . 78
6.3.3 Frequency of Errors by Class . . . . . . . . . . . . . . . 78
6.3.4 Linguistic Features Contributing to Error . . . . . . . . 80

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7 Applied Textual Inference Methods and Results 87
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.2 Annotation with Ontology Elements . . . . . . . . . . . . . . 88

7.2.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 88



CONTENTS 7

7.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.3 Graph Distance with Dependency Structures . . . . . . . . . 91

7.3.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.3.2 Reranking . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.4.1 Effect of Query Formulation . . . . . . . . . . . . . . . 101

7.4.2 Effect of Semantic Graph Features . . . . . . . . . . . 102

7.4.3 Effect of Text within Images . . . . . . . . . . . . . . . 104

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8 Knowledge Resources 107

8.1 Scone Knowledge Base System . . . . . . . . . . . . . . . . . . 107

8.2 Retrieval with WordNet . . . . . . . . . . . . . . . . . . . . . 108

8.2.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.3 Improved Knowledge Base Structure . . . . . . . . . . . . . . 112

8.3.1 Upper Levels: WordNet + DOLCE . . . . . . . . . . . 112

8.3.2 Acquiring Knowledge from Training Data . . . . . . . 113

8.4 Retrieval with SconeImage Ontologies . . . . . . . . . . . . . 115

8.4.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

9 Conclusions 119

9.1 Experiments and Findings . . . . . . . . . . . . . . . . . . . . 119

9.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

9.2.1 Summary of Contributions . . . . . . . . . . . . . . . . 121

9.2.2 Refined Vocabulary for Sources of Error . . . . . . . . 122

9.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.3.1 Summary of Future Work . . . . . . . . . . . . . . . . 124

9.3.2 Extension to Other ATI Tasks . . . . . . . . . . . . . . 126

9.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Bibliography 131

A Sample Parameter Files 141



8 CONTENTS

B Upper-level Ontology: DOLCE 143

C Upper-level Ontology: WN+DOLCE 155



List of Figures

1.1 Sample retrieval results for the query “people petting their
dogs” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Image from the Phetch data set with descriptions and tags. . 33

3.2 An sgml representation for structured Phetch documents. . . . 37

4.1 Dependency analysis, as a list and as a visual annotation. . . 41

4.2 Common dependency patterns of 2-4 words. . . . . . . . . . . 42

4.3 Frequency of dependency patterns across phrases (col 2) and
images (col 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Single-word titles with hidden syntactic structure from Flickr.com.
45

4.5 Common dependency patterns from Flickr titles and descrip-
tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.6 Percent of Flickr Descriptions (col 2) and Titles (col 3) where
the most common dependency patterns appear. . . . . . . . . 47

5.1 Matching a query against indexed descriptions based on key-
words. Terms shown in bold are features shared by both de-
scriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 Indri structured queries. . . . . . . . . . . . . . . . . . . . . . 55

5.3 An example image composed mostly of text. Such images were
pruned from the 5A data set for these experiments. . . . . . . 56

5.4 Example of refined keyword representation: spell-correction
and stemming. Terms shown in bold are features shared by
the query and index descriptions. . . . . . . . . . . . . . . . . 60

5.5 Example of semantic expansion. Terms shown in bold are
features shared by the query and index descriptions. . . . . . 61

9



10 LIST OF FIGURES

5.6 Sample dependency annotation. Terms and relations in bold
are common to index and query descriptions; relations in dashed-
bold are common based on part-of-speech matching. . . . . . 63

5.7 A second example of dependency annotation. Terms and rela-
tions shown in bold are common to this index description and
the query shown in Figure 5.6. . . . . . . . . . . . . . . . . . 64

5.8 Example dependency edges augmented with semantic con-
cepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1 Visual depiction of retrieval outcomes. . . . . . . . . . . . . . 69

6.2 Expected gains in MRR from correcting retrieval failures. Rel-
evant images were inserted into the result list at rank N =
10, 9, 8, etc. (shown on the x-axis). . . . . . . . . . . . . . . . 71

6.3 Expected gains in MRR from correcting errors. Relevant im-
ages found at rank N = 10, 9, 8, etc. were inserted into the
result list at rank 1. . . . . . . . . . . . . . . . . . . . . . . . . 72

6.4 Expected gains in MRR from additional descriptions. . . . . 74

6.5 Comparison of expected gains from correction vs. additional
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.6 Sample image with visual features in the description. . . . . . 82

6.7 Sample image without visual features in the description. . . . 82

6.8 Sample image with misleading orthography and non-relevant
repetition in the description. . . . . . . . . . . . . . . . . . . 84

7.1 An example of knowledge-base annotation of a topic and index
description. Terms shown in bold are features shared by both
descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.2 Retrieval process with graph-based reranking. . . . . . . . . . 93

7.3 KB representation for image descriptions in SconeImage. . . . 94

7.4 Similarity features for a sample pair of edges. . . . . . . . . . 97

7.5 Samples of query encodings. . . . . . . . . . . . . . . . . . . 103

8.1 The file organization of SconeImage knowledge bases and rea-
soning modules. . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.2 WordNet annotation of an image description. . . . . . . . . . . 111

8.3 Top level of the SconeImage Ontology, adapted from DOLCE
+ WordNet. (Gangemi et al., 2003) . . . . . . . . . . . . . . . 114



LIST OF FIGURES 11

8.4 Example of knowledge acquisition from training data. KB ele-
ments for “woman” “girl” and “female” are added, along with
English strings that trigger “woman” and “girl”. Stemming
at retrieval time compensates for the singular-plural variation. 115

8.5 WordNet type hierarchy for ’woman’ and ’man’. . . . . . . . . 116
8.6 SconeImage type hierarchy for ’woman’ and ’man’. . . . . . . 116

9.1 Screenshot from the web-based annotation tool used for the
analysis in Chapter 6. . . . . . . . . . . . . . . . . . . . . . . 125

9.2 Diagrammatic description of applied textual inference Tasks.
They are recognized to be hard enough to require some amount
of language understanding for success, but they are evaluated
based on the accuracy of a decision output. Entailment, Para-
phrasing, and other well-known tasks are shown here as ex-
amples that meet this description. Image-identity is shown as
a new example. . . . . . . . . . . . . . . . . . . . . . . . . . . 127



12 LIST OF FIGURES



List of Tables

3.1 Overview of the Phetch data set . . . . . . . . . . . . . . . . 31
3.2 Partition of the Phetch corpus into sections for common eval-

uations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Overview of the flickr.com sample. . . . . . . . . . . . . . . . 44

5.1 Document size of some TREC 2008 Web Track collections.
Phetch is shown for comparison. . . . . . . . . . . . . . . . . . 53

5.2 Word counts for the 5A data set, non-textual images. . . . . 57
5.3 Results of retrieval with the baseline model. . . . . . . . . . . 59

6.1 Rank of the relevant image in baseline run of Phetch 5A train-
ing queries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2 Classes of precision error. . . . . . . . . . . . . . . . . . . . . 77
6.3 Classes of recall error. . . . . . . . . . . . . . . . . . . . . . . 79
6.4 Frequency of error classes. . . . . . . . . . . . . . . . . . . . . 80
6.5 Error-inducing features in the Phetch 3A data section. . . . . 81
6.6 Frequency of error-inducing features. . . . . . . . . . . . . . . 86

7.1 Results of spelling correction and knowledge-base annotation.
ANOVA significance is shown for improvement over the key-
words baseline. . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.2 Vertex features for graph-based description similarity. . . . . 96
7.3 Results of re-ranking. ANOVA significance is shown for the

improvement over the keywords baseline. . . . . . . . . . . . 102
7.4 Results of retrieval with naive vs. structured queries. . . . . . 103
7.5 Results of retrieval using combinations of syntactic and seman-

tic features for graph-based reranking. ANOVA significance is
shown for improvement over the keywords baseline. . . . . . . 104

13



14 LIST OF TABLES

7.6 Results of retrieval on all images from the 5A data set, vs. the
subset without textual content. . . . . . . . . . . . . . . . . . 105

8.1 Effect of annotation with wordnet synsets on Phetch section
5A, non-textual images. ANOVA significance is shown for
improvement over the keywords baseline. . . . . . . . . . . . 111

8.2 Comparison of knowledge resources for annotated description
retrieval. ANOVA significance is shown for improvement over
the keywords baseline. . . . . . . . . . . . . . . . . . . . . . . 117

9.1 Candidates for general linguistic causes of mismatch between
semantically similar texts. Accommodation has two sub-classes,
Analogy and Contradiction. . . . . . . . . . . . . . . . . . . . 123

9.2 Error classes from the original vocabulary that were removed
in the general vocabulary. . . . . . . . . . . . . . . . . . . . . 124



Chapter 1

Applied Textual Inference and
Description Retrieval

1.1 Background

The experiments in this thesis address the task of retrieving images based
on their short descriptive labels. As in ad-hoc document retrieval, a baseline
system using term vectors to represent these labels performs reasonably well
(>80% MRR). However, upon inspection of the labels where the baseline
system fails, we observe that the most challenging examples for this task may
require us to enrich the feature space of our solution, allowing the system to
capture more of the deep semantic similarities that humans seem to notice
when they make comparisons between images and their descriptions.

As a result, we present a knowledge-based solution for retrieving English
descriptions for objects, such as images, from a collection. Based on analysis
of the results using keywords alone1, we infer that an ideal solution to this
problem should use deeper representations of the meaning encoded in textual
descriptions. This places our work in the landscape of systems for Natural
Language Understanding (NLU).

A trademark of such systems is that they convert natural-language text
into machine-operable semantic objects, requiring developers to design or se-
lect an appropriate data structure to capture the result of conversion. Eval-
uating these structures is challenging. A researcher might propose a new
representation, then evaluate his NLU system by providing it with some ex-

1Refer to Chapter 6 for a detailed analysis of baseline system errors

15



16 CHAPTER 1. INTRODUCTION

ample texts and comparing its output to a set of hand-validated analyses that
serve as a gold-standard. This approach has been used for semantic parsing
historically (Shank and Tesler, 1969) and in more recent systems (Ge and
Mooney, 2006). While such evaluations are critical for driving improvements
to a single NLU system, there is a need for complementary evaluations that
allow researchers who have chosen different representations, and hence have
different gold standards, to compare their results.

1.2 Applied Textual Inference (ATI)

Applied Textual Inference (ATI) as used in this thesis refers to the class of
generic task-based evaluations that address this need. ATI tasks are assumed
to depend on some level of text understanding and background knowledge,
but they are associated with evaluation metrics that abstract away from
system-specific representational choices. The flagship example of an ATI
task is Recognizing Textual Entailment (RTE). Dagan et al. (2006) describe
RTE as follows:

. . . recognize, given two text fragments, whether the meaning
of one text can be inferred (entailed) from another text. (Dagan
et al., 2006)

ATI tasks are challenge problems. Because they are intended to drive re-
search on text understanding, the problems are designed to be “hard enough”
to require reasoning. However in order to support cross-site comparisons of
results, the problems are evaluated at the surface level. Other examples
include paraphrasing, summarization, word-replacement, and question an-
swering (QA). A component of an ATI problem definition is an evaluation
corpus that can be shared among researchers working on independent solu-
tions. The SemEval-2007 Workshop on Semantic Evaluations2 included 18
such tasks, framed as shared evaluations with over 100 systems submitted for
evaluation. Tasks included classifying semantic relations (Girju et al., 2007)
and temporal relations (Verhagen et al., 2007) between words; identifying
valid lexical substitutions (McCarthy and Navigli, 2007); and several cross-
lingual word sense disambiguation tasks (Agirre et al., 2007; Orhan et al.,
2007; Jin et al., 2007).

2http://nlp.cs.swarthmore.edu/semeval/
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1.3 Current Approaches

Shared evaluations on ATI tasks have succeeded in generating a wide variety
of solutions from researchers. Taking the PASCAL RTE Challenge as an
example, we can see that deep representations and even knowledge-based
techniques seem to play an important role in state-of-the-art solutions. Of
16 research teams participating in the first challenge in 20053, 7 used features
from WordNet, 3 applied some kind of world knowledge, and 7 applied logical
inference engines (9 systems out of 16 used at least one of the three). In 2007
the number of participants and the variety of techniques expanded, with the
vast majority of these systems relying on some combination of WordNet,
syntactic matching/alignment, and machine learning algorithms; the most
successful system in that year applied all of these techniques in addition to
a logical inference engine (Hickl and Bensley, 2007).

All of these techniques seem promising for problems in the same class as
RTE - problems that can also be described as instances of applied textual
inference. However, to adapt them effectively for a particular ATI task,
we must first understand that task and the details of why more shallow
techniques fail.

1.4 Retrieving Object Descriptions

By framing the task of image-description retrieval as an instance of applied
textual inference, we can draw on the growing literature described in Section
1.2, helping us solve the textual understanding problem represented by these
challenging examples. We will use the details of the image retrieval problem
to demonstrate how ATI techniques can be effectively adapted for a new task.

Textual labels are attached to electronic data in many ways, including
filenames, link text, captions, descriptions, and titles. Labels appear al-
most everywhere that data does. New approaches to retrieving these labels,
matching them against user-supplied queries, give us new tools for access-
ing electronic resources. These tools complement approaches that rely on
features extracted directly from the information objects, like Content-Based
Image Retrieval (CBIR).

An important feature of object labels assigned by humans is that they
often consist of short multi-word phrases. These phrases exhibit syntactic

3http://pascallin.ecs.soton.ac.uk/Challenges/RTE



18 CHAPTER 1. INTRODUCTION

and semantic structure that is not always modeled by information retrieval
systems. However, this structural information becomes more prominent in
light of the fact that labels, which will make up both queries and documents
in our retrieval paradigm, are very short compared to most web pages or
passages. Consider a web page devoted to care of beagles. The web page
might refer to a beagle in a number of ways, as in: “your pet will need
to be fed often,” and “watch out, these dogs like to chew on shoes.” A
query like “pets that chew on shoes” could be matched to this page, based
on all of the page text. But based on words alone, it would be easy for
a retrieval system to miss an image described as “a beagle gnawing on my
loafer.” These features make retrieval for image descriptions a specialization
of known-item and short-document search. In cases like this, it becomes even
more important to leverage syntactic and semantic evidence in addition to
keywords.

1.4.1 Retrieving Images

We will approach the problem of image retrieval with two distinct use cases
in mind. In a large collection of images or other labeled objects, a user often
remembers one that he would like to see or use, as in “show me the one where
the guy and the girl are standing in a parking lot.” The user may not recall
the filename or other details that would allow him to navigate to the image
directly. Still, he can describe some properties of the object and he wants
to find it again. This distinguishes the task of known-item retrieval from
the task of browsing, where the query describes a class (“pets playing with
toys”), and the user would like the system to retrieve any labeled object that
is a member of this class (e.g. “dog catching a frisbee”). Our experiments
focus on the first case, but we will explore some properties of both.

As an example of the problem we address in this work, consider an image
search using the query “people petting their dogs”. The four images of Figure
1.1 (1.1a, 1.1b, 1.1c, 1.1d) are examples of what we might expect to see in
the results.

These four images and their labels reveal interesting features of the prob-
lem. First, words that appear in multiple image labels do not guarantee that
the images are alike, just as different words do not guarantee that the im-
ages differ. For example, three out of the four images feature children, but
one of these is labeled “boys and girls.” This lexical mismatch obscures an
important similarity.
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(a) “drawing of people on
the floor petting their dog”

(b) “a boy and girl petting
a dog”

(c) “christmas animal cel-
ebration child”

(d) “paw of dog on legs of
owner”

Figure 1.1: Sample retrieval results for the query “people petting their dogs”

Second, image labels exhibit syntactic and semantic structure. Most of
the labels in Figure 1.1 consist of sentence-like phrases that were generated
by the owners of the images. Even a specific phrase like “petting their dog”
can be found, intact, in more than one image label. The label for Figure
1.1d exhibits a series of nested prepositional phrases. This structural rich-
ness seems appropriate for the query: given the label for Figure 1.1a or
Figure 1.1b, one could plausibly answer the question “What’s happening in
this picture?” This structure adds information that is not captured at the
lexical level alone. The effect can be seen in a change as simple as word or-
der. Consider the difference between the image label “paw of dog on legs of
owner,” and one with identical words but different structure: “legs of owner
on paw of dog.” These two phrases represent different images.

Finally, human interpretation of these labels at the lexical, syntactic, and
semantic levels is influenced by background knowledge. As a reader it is easy
to see the connections among the terms used to refer to humans in Figure 1.1:
people, a boy and a girl, child, owner. We can also see connections among
the terms used for pets: dog, animal. By making these connections available
to a retrieval system, we can apply them to the known-object and browsing
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tasks. For example, to make the query more specific, substitute child, boy,
or girl for people in the query. To make the query more general, substitute
animal for dog.

1.5 Thesis Outline

This thesis demonstrates how an inference engine and a set of symbolic knowl-
edge resources in the form of ontologies can contribute to performance on the
task of retrieving object descriptions, as measured by Mean Reciprocal Rank
in an IR-style evaluation on a set of labeled images. Important questions
addressed by this research include the cost of developing such a knowledge
resource and the quantitative benefit in an end-to-end system for image re-
trieval. In the process of answering these questions, we will describe the
results of several sub-tasks, each of which represents a contribution to the
understanding of this problem and to the discovery and implementation of a
knowledge-based solution:

• Introduce the image retrieval experiments that are supported by a data
set containing over 50,000 images, hand-labeled with multiple descrip-
tions. Compare to other widely available resources for evaluating se-
mantic retrieval. Contrast the description-based retrieval task with
tag-based retrieval, including the frequency of tags and descriptions in
publicly-available image collections. (Chapters 3, 4)

• Present candidate solutions to the description-representation problem.
Describe a series of parameterizations for calculating the similarity be-
tween two descriptions. Apply the first of these parameterizations in a
baseline retrieval system that represents descriptions as bags-of-words.
(Chapter 5)

• Perform a detailed error analysis of the baseline retrieval system. Iden-
tify classes of error that occur when the system compares two descrip-
tions, as well as linguistic features of the descriptions that may affect
the frequency of these errors. Introduce three hypotheses that connect
these error classes to specific knowledge-based solutions. (Chapter 6)

• Implement additional parameterizations from Chapter 5 to test these
hypotheses, augmenting the baseline retrieval system with semantic
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and syntactic knowledge. Test two configurations of the new system:
descriptions annotated with concepts from a hand-constructed knowl-
edge base, and descriptions represented by dependency graphs whose
vertices are connected to the same knowledge base. Evaluate the hy-
potheses from Chapter 4 by calculating the reduction in specific error
types when these configurations are used for retrieval. (Chapter 7)

• Describe the structure and development process for the knowledge re-
sources used in Chapter 7. Compare these resources to other widely-
available ontologies. Evaluate the effect on retrieval when different
knowledge resources are applied. (Chapter 8)

1.6 Conclusions

In the following chapters, we will investigate whether knowledge-based se-
mantic analysis of human-assigned multiword image labels can be performed
using NLP techniques, combining syntactic and semantic evidence; further,
whether this analysis results in semantic features that are useful in retrieving
the images from a large collection. In particular, we will examine whether
the resulting semantic representation enables a retrieval system to correctly
answer queries that require inference more powerful than that which keyword-
based representation supports. In the process, we construct a retrieval paradigm
that complements a keyword-based approach, achieving retrieval results that
are significantly better than keywords alone, in particular for certain types
of inference-dependent queries.
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Chapter 2

Related Work

Although the SconeImage system is a pipeline for information retrieval, the
work in this thesis builds on current research from several communities, in-
cluding applied textual inference (recognizing textual entailment, paraphrase
identification, question answering), semantic distance, and knowledge acqui-
sition. In this chapter we provide an placement of our work with respect to
each of these landscapes.

2.1 Applied Textual Inference with Semantic

Distance

Task-based evaluations of information extraction systems were performed in
the mid- to late- nineties at the Message Understanding Conferences Grish-
man and Sundheim (1996), which moved toward textual understanding tasks
at MUC-6 with the introduction of the SemEval (semantic evaluation) tasks:
word-sense disambiguation, coreference resolution, and predicate-argument
labeling. Many of the techniques used in applied textual inference systems
today are refinements of approaches developed for MUC.

Since 2005, the flagship venue for the applied textual inference community
has been the Recognizing Textual Entailment (RTE) Challenge (Dagan et al.,
2006). The target problem for these challenges is described as follows:

The RTE task is defined as recognizing, given two text fragments,
whether the meaning of one text can be inferred (entailed) from the

23
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other. This application-independent task is suggested as captur-
ing major inferences about the variability of semantic expression
which are commonly needed across multiple applications. (Dagan
et al., 2006)

In 2010, the RTE Challenge will be a sponsored track1 in the Text Anal-
ysis Conference (TAC-2010) hosted by the National Institute of Standards
and Technology (NIST). TAC-2010 will also sponsor tracks for knowledge
base population (KBP) and summarization.

Like the image retrieval task presented in this thesis, detecting a rela-
tionship like entailment, paraphrasing, or summarization between two texts
can be framed as an application of semantic distance calculations. A great
deal of work relevant to this thesis has been done in the areas of applying
semantic distance functions, both knowledge-based and empirical, to each of
these problems.

An overview of semantic distance functions using WordNet is given by
Budanitsky and Hirst (2001). Several of these functions depend on path
length through the kb, in similar fashion to the vertexSim function we de-
fine in Chapter 7. These functions were compared with corpus-derived se-
mantic distance features in the context of paraphrase detection by Mihalcea
et al. (2006), and applied to word sense disambiguation by Patwardhan et al.
(2007). These example systems and others support the findings of Chapter
8, that a domain-general resource like WordNet can contribute to better per-
formance on a task that involves text understanding. Our work extends this
result by showing that, at small additional development time, a task-specific
knowledge base can be developed that yields better results than WordNet
alone.

In addition to semantic distance functions, the RTE literature includes
relevant work on system architectures and comparison of knowledge resources.
Giampiccolo et al. (2008) describes the variety of systems that were submit-
ted to the RTE track of TAC-2008, many of which include inference engines,
logical forms, or knowledge bases. Of the twenty-six teams participating
in that track, 18 exploited WordNet as a lexical-semantic resource. An
analysis of technologies applied in the 2007 challenge shows that many of
the best-performing systems from that year applied lexical-semantic features
from WordNet in combination with syntactic alignment (Giampiccolo et al.,

1http://www.nist.gov/tac/2010/RTE/index.html
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2007). The SconeImage architecture applies some of the lessons learned from
these systems to a new type of applied textual inference (retrieving object
descriptions).

2.2 Knowledge Acquisition and Development

Knowledge bases are an enabling technology for many of the approaches
described in Section 2.1. In this work, we describe one approach to knowledge
base development that re-uses existing resources at the top levels of the
ontology and performs manual acquisition of domain-specific knowledge by
examining and correcting errors found in training runs. In our work we apply
the DOLCE upper ontology described in Masolo et al. (2003) and its mapping
to WordNet following Gangemi et al. (2003).

This development strategy is similar to the approach taken by Fan et al.
(2003). Although the upper levels of the resulting ontology are reusable
across multiple systems, this approach implies that knowledge engineers must
author the domain-specific layers as appropriate for every new domain (but
with portability across unseen users of the system, as we will show in Chapter
7). Although the goal of this thesis is to show that when you can get it,
knowledge helps, there are many options in the literature that address the
acquisition problem.

Some of the most successful of these help non-engineers to assemble
knowledge representations from reusable components, as in Clark and Porter
(1997), or from scripts, as in Gil and Tallis (1997). These strategies allow
Subject Matter Experts to author domain knowledge without requiring them
to learn knowledge engineering.

2.3 Ad-Hoc Retrieval and Question Answer-

ing

The description-retrieval problem addressed in this thesis is related to, but
distinct from, ad-hoc document retrieval. A technical introduction to ad-hoc
retrieval is given by Manning, Raghavan, and Schütze in their recent text-
book (Manning et al., 2008). As discussed in Chapter 5, images in the Phetch
corpus are represented as documents that are very short, in comparison to
mainstream document retrieval collections. In addition, the experimental
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setting where exactly one image from the collection is relevant to each re-
trieval topic fits better into the class of known-item retrieval, described by
Ogilvie and Callan (2003), among others.

In the broader literature of information retrieval, very relevant techniques
have been used in the task of Question Answering (QA). In fact, question
answering has also been classified as an instance of applied textual inference2.
The unit of text returned by answer-candidate retrieval components is usually
short. In addition, lexical matching has long been known to cause problems
for these systems, since a segment of text that is similar to a question does
not necessarily answer the question. An example from Haghighi et al. (2005)
is shown below:

Consider a Question Answer system searching for an answer to
When was Israel established? A representation which did not
utilize syntax would probably enthusiastically return an answer
. . . “The National Institute for Psychobiology in Israel was estab-
lished in 1979.” . . . it’s important to match relationships as well
as words . . . (Haghighi et al., 2005)

As a result, logical and semantic representations have a long tradition in
question answering systems (Clark et al., 1999; Rinaldi et al., 2003; Harabagiu
et al., 2000; Hovy et al., 2001). The error-analysis work performed in this
thesis helps to establish which techniques from this tradition are appropriate
for image retrieval. For example, we will show in Chapter 6 that ontology-
related errors were very common in our data set, but that errors attributed
to contradictions were rare. As a result, we adopted query-augmentation
techniques from a tradition described in Varelas et al. (2005), while saving
for future work some of the contradiction-specific methods that have been
applied with success in QA (Harabagiu et al., 2006).

SconeImage is one example of an architecture that applies background
knowledge for improved retrieval results, but the focus of this work is on
exploring and comparing the knowledge resources themselves, and their re-
lationship to retrieval errors. Another thread of related work in question
answering focuses on the architecture itself, exploring data structures like
the Annotation Graph (Bilotti et al., 2008) for integrating such knowledge.
A series of experiments that could be interesting for future work might in-
vestigate how these architectures could accommodate SconeImage features.

2http://art.uniroma2.it/TextInfer2009/
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2.4 Image Retrieval

At the top level, the SconeImage application performs image retrieval. As
a strictly description-based system, it is distinct from Content-Based Image
Retrieval (CBIR) systems, which use computer-vision techniques to calcu-
late the similarity between images at the pixel level, rather than relying on
natural-language annotations. A survey of CBIR systems and the features
they use is given by Veltkamp and Tanase (2002). Some hybrid systems have
also been developed that take advantage of direct semantic annotation or
tags, but not free-text descriptions; examples include Aslandogan and Yu
(2000), Wang et al. (2008), and Blei and Jordan (2003).

Knowledge-based image search has been described in Aslandogan et al.
(1997), where users could explicitly browse for images labeled with a partic-
ular semantic concept, independent of the English strings. That work did
establish the utility of attaching to images not merely keywords, but concepts
rooted in an ontological knowledge base. More recently, Wang et al. (2008)
have shown improvements over baseline results from Google Image Search by
performing ontology-driven reranking. However, in that application queries
were given as lists of concepts. In this thesis we extend this utility by de-
coding the concepts from natural-language descriptions. Our work not only
confirms prior findings that ontologies can improve retrieval results, but we
find that these improvements can be replicated under more realistic retrieval
conditions (plain-language queries).

Systems that do perform text-based image retrieval often rely on tags
rather than descriptive text, or reduce descriptions to a series of keywords
before performing retrieval. Most companies that host mainstream web-
search engines sponsor image-specific interfaces that fall into this category.
The meta-search website Fagan Finder3 lists nine image search engines, along
with three photo blogs, thirteen websites for stock photography, ten for photo
sharing, and thirty-four other online image sources, ranging from Biomedical
image libraries4 to the image catalog of the Library of Congress5.

The ImageCLEF track of the Cross Language Evaluation Forum (CLEF)
has sponsored shared evaluations on tasks related to description-based image
retrieval from 2003 to the present (ImageCLEF 2010). Four teams partici-
pated in the inaugural evaluation, with one out of four applying knowledge

3http://www.faganfinder.com/img
4http://phil.cdc.gov/Phil/
5http://lcweb.loc.gov/rr/print/catalog.html
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from WordNet and the remaining systems relying on term-frequency mod-
els (Clough and Sanderson, 2003). The most recent ImageCLEF workshop
was held in 2009 (Paramita et al., 2009); in that year only one system ap-
plied semantic knowledge (from WordNet). There are at least two differ-
ences between the ImageCLEF tasks and ours that were likely to discourage
knowledge-based approaches: first, historically the tasks were cross-lingual,
and off-the-shelf knowledge resources for languages other than English are
rare. The work we propose here could be valuable in overcoming this obsta-
cle, considering the low cost of development for adding lexical strings to the
existing conceptual structure that we will describe in Chapter 8. Second, the
ImageCLEF evaluation applies non-traditional metrics in order to push the
state of the art in novel directions. The 2009 metrics rewarded systems for
achieving diversity as well as precision in their results; while it seems likely
that the techniques presented here could help improve the precision of these
systems, the effect on synthetic metrics like diversity is beyond the scope of
this thesis.

Although the technologies are closely related, the focus of this thesis
is slightly different from the task supported by image search engines like
Google6 and Microsoft’s Bing7. These systems support ad-hoc search, where
the user seeks “pictures of animals” and any image featuring ducks, rabbits,
or puppies will do. The evaluations presented in this thesis more closely
replicate the case where a user seeks a particular image (“the one where the
puppy is chasing the kitten around that blue chair in the living room”), and
must continue the search task until he finds it. This contrast affects the
types of inference and query expansion that are appropriate, for example
as discussed in Section 7.3.2 with respect to asymmetry in the similarity
function.

Nonetheless, findings from this thesis can apply to such systems. The
interface of Google Image Search and of Bing Image search offer advanced
search options that confirm that knowledge of the task is important in ad-
hoc retrieval, as well. These options allow the user to select image features
like “size=Medium, Large, Icon..., type=face, photo, clip art, line drawing...,
color=full color, black and white, red, orange, green...”. The menu-driven
interface circumvents the problem of extracting such features from a plain-
text description. However by studying plain-text descriptions, as we do in

6www.google.com/images
7www.bing.com/images
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this thesis, we can discover what users would search for if the interface were
unconstrained. This results in a more accurate ontology of features that
could be used to improve the menu-driven tools.

For example, we have discovered that users make a critical distinction
between features that attach to the contents of an image (“black and white
dog”) and features that describe the image as an object (“black and white
photo of a dog”). Currently, the semantics of menu-driven features are un-
derspecified in this regard. A user may choose “color=black and white”, but
must guess as to whether the filter will be applied at the image or content
level. A simple modification of the user interface could apply this finding for
improved control over search results.
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Chapter 3

A Corpus for Evaluating
Description Retrieval

3.1 The Phetch Data Set

The Phetch data set was created by von Ahn and Dabbish (2004). It was col-
lected in the context of an online game where multiple participants compete
in teams to identify an image based on one teammate’s typed description.
The exercise was repeated for each image in a large collection of JPEG files
harvested from the web. Images are roughly thumbnail-sized, with an aver-
age file size of 6.3KB and dimensions that range from 72x72 pixels to 224x169
pixels. The total collection (images plus annotations) requires approximately
350MB of disk space. A summary of the corpus size is given in Table 3.1.

In this data set, a single description is a short paragraph written by
a single annotator/participant about a single image. Each image in the

Totals
Images Descriptions Words
54,168 135,561 1,603,567

Mean Sdv Min Med Max
Descriptions per image 2.5 1.5 1 2 13

Description words per image 38 25 1 32 549
Tags per image 8 3.5 2 7 32

Table 3.1: Overview of the Phetch data set
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collection has multiple descriptions. Each description is composed of one or
more phrases, short segments that contribute to the overall description and
are usually connected rhetorically to each other. An example1 is shown in
Figure 3.1.

Image descriptions are different from image tags, which also occur in this
data set. The words that appear as tags are unordered keywords that have
been associated with the images by committee: each tag was independently
produced by a group of participants in another online game, also created by
von Ahn and Dabbish (2004). This means that descriptions were not avail-
able to the players who generated tags, and tags were not available to players
assigning descriptions. As a result the tags come from a restricted vocabulary
(since rare or unique words would fail to meet the consensus requirement),
and have no syntactic structure as a group. Each description, in contrast,
represents one player’s plain-English attempt to express the image contents
in his own words. Although the properties of the tags as a corpus may also
yield interesting observations, in this thesis we focus on the descriptions and
defer a deeper analysis of the tags for possible future work.

Many images in the data set have at least two descriptions assigned to
them, each provided by a different participant. This property makes the
Phetch data well-suited for evaluation in a labeled-object retrieval task,
where the retrieval engine simulates the behavior of a human searching for
an image, based on his teammate’s description. One description is used as
the retrieval topic, and any remaining descriptions are wrapped as a single
document that represents the image in a collection. Because both labels are
associated with the same image, we can use image identity as a proxy for
relevance judgments and evaluate retrieval on this data set consistently, with
no additional annotation. In this setting, the only relevant document is the
one describing the same image as the query.

1In this example punctuation has been added by the author to mark descriptive-phrase
boundaries. In the raw data, these boundaries are marked by the carriage return character,
since the segmentation is generated by a player pressing ’Enter’ while typing an image
description. As a result, these segments do not always correspond to syntactic constituents.
However it is a useful abstraction to think of them as phrases.
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Description 1: “stadium; pageant girls in the foreground”

Description 2: “olympic stadium; women in foreground; with
sashes”

Description 3: “people at sporting event; pageant contestants”

Tags: girl face blond blue game crowd model people hair
miss

Figure 3.1: Image from the Phetch data set with descriptions and tags.

3.2 Comparable Data Sets

The availability of relevance judgments and the level of detail in textual
annotations set the Phetch corpus apart from other data sets that are com-
monly used to evaluate image retrieval, including the Corel image collection.
Corel is in common usage for content-based image retrieval (CBIR) exper-
iments. Corel images are published in groups, sub-collections that share a
common subject or theme. These thematic groups are used as IR topics in
query-by-image experiments; an image is posed as a query to a CBIR sys-
tem, and images from the same group are considered relevant. A recognized
problem with this approach is that the results of such an evaluation depend
heavily on the particular query image that experimenters select from each
group. Every research team may select queries that play to the strengths of
its system. The effect on experimental results, and the resulting inability to
compare results across research groups, is described by Müller et al. (2002).
In that work the authors establish the need for standardized test sections
within widely-used corpora for image retrieval. This type of partitioning is
applied to the Phetch corpus in Section 3.3.

In addition to standardized corpus partitions and the availability of rele-



34 CHAPTER 3. A CORPUS FOR DESCRIPTION RETRIEVAL

vance judgments, the Phetch corpus contrasts with Corel by including image
descriptions. The Corel image collection annotates each image with an un-
ordered set of single-word tags, but not with descriptive titles or captions.
While tags are useful for some experiments, they do not meet the needs of re-
searchers who seek to evaluate retrieval based on descriptive text. Shirahatti
and Barnard (2005) summarize the problematic assumptions that underlie
tag-based evaluation as follows:

These approaches are only indirectly connected to the task that
they are trying to measure. For example, there is an implicit
assumption that a person seeking an image like one labeled grass
will be content with all the images labeled grass and none of the
ones not labeled grass (Shirahatti and Barnard, 2005).

Because the Phetch corpus includes descriptions as well as tags, it can
support both experimental styles.

A comparable data set that does support description-based image re-
trieval is the evaluation set used for the ImageCLEF shared tasks. The
ImageCLEF evaluation set is derived from the IAPR TC-12 Benchmark of
20,000 images (Grübinger et al., 2006), which has been used in the Image-
CLEF image retrieval evaluations since 20062.

In comparison, the Phetch data set contains more than twice as many im-
ages, although not all of these images are used in our retrieval experiments3.
In addition, the IAPR TC-12 data does not include relevance judgments.
Judgments have been added for the ImageCLEF test collection, a subset of
60 images sampled from IAPR TC-12. The resulting data has proven to be
helpful for comparative evaluation, but not for system training4.

3.3 Establishing Corpus Sections

To be effective as a shared resource, a data set should include sections that
allow researchers to perform comparable experiments. The importance of
shared experimental conditions, including data and evaluation methods, has

2http://ir.shef.ac.uk/imageclef/2006/
3see Chapter 7 for additional detail
4The website for ImageCLEF 2006-2008 encourages participants to

generate their own training data before submitting retrieval runs,
http://eureka.vu.edu.au/˜grubinger/ImageCLEFphoto2007/adhoc.htm
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Section Descriptions per Image Total Images Total Words

1A 1 17,237 470,924
1B 1 17,237 470,924

2A 2 7,264 371,313
2B 2 7,265 371,879

3A 3 5,171 367,284
3B 3 5,171 367,999

4A 4 3,084 283,142
4B 4 3,084 282,486

5A 5 or more 2,946 357,582
5B 5 or more 2,946 355,853

Table 3.2: Partition of the Phetch corpus into sections for common evaluations.

been widely recognized in most scientific communities, including information
retrieval (Harman, 1992).

To this end, we present a partition of the Phetch corpus that can be used
to clearly identify the experimental conditions reported in this thesis. This
partition is supported by the free distribution of scripts that generate the
sections5, given the full plain-text corpus as input.

At the top level, this partition isolates 5 sections according to the number
of descriptions attached to each image. This division supports experimental
control for the number of descriptions per image, which affects retrieval ac-
curacy6. Each section is further divided into ’A’ and ’B’ sub-sections. Half
of the images from a given section, along with all of their descriptions, are
placed in the ’A’ sub-section. The other half of the images are placed in the
’B’ sub-section. This division supports experimental control for separating
training and testing data on the basis of seen and unseen images. A summary
of the partition sizes is shown in Table 3.2.

Sections 1A and 1B are included in the partition even though images
with only one description are not as appropriate for the evaluation paradigm
defined in Section 3.1. With two or more descriptions, one may be used

5Send email requests to atribble a©cs.cmu.edu
6see Chapter 5 for additional detail
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as a topic that is meant to retrieve the other. With only one description,
there is no meaningful topic/document division. Nonetheless, the examples
in sections 1A and 1B could be used in the future for training genre-specific
language models or for other parameter-tuning experiments.

3.4 Logical Document Structure

In addition to establishing experimental partitions of the data, we have used
the logical structure of Phetch annotations to create a document format
that conforms to the TREC7 text format. TREC text is a flexible sgml-
like formalism. It requires every document to be enclosed in beginning and
end markers, and to be labeled with a DOCNO field that encloses a unique
document identifier. The body of the document text must be enclosed in a
TEXT field.

Within these constraints, additional structure may be added by creating
new fields that serve as markup on the content enclosed in TEXT. Such
markup may then be modeled, stripped out, or ignored by indexing and
retrieval systems. In the case of Phetch images, we propose a document
structure that identifies descriptions, phrases, and tags as distinct fields. An
example of an image-document is shown in Figure 3.2.

3.5 Conclusions

In this chapter we introduce the Phetch data set, a collection of over 54,000
images that have been richly annotated with descriptive labels. From the
raw corpus we have derived training, development, and test sets that are
formatted using the trectext conventions. The resulting collection compares
favorably with comparable corpora for evaluating image retrieval, including
the Corel image collection and the ImageCLEF test collection.

Given this landscape of evaluation corpora for image retrieval, in par-
ticular description-based retrieval of images labeled by multiple human an-
notators, the Phetch corpus and its partitioning into replicable subsets are
well-timed contributions to the textual inference community.

7http://trec.nist.gov/overview.html
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<DOC>
<DOCNO>image-1 </DOCNO>
<TEXT>
<DESCRIPTION>
<PHRASE>stadium </PHRASE>
<PHRASE>pageant girls in the foreground </PHRASE>
</DESCRIPTION><DESCRIPTION>
<PHRASE>olympic stadium </PHRASE>
<PHRASE>women in foreground </PHRASE>
<PHRASE>with sashes </PHRASE>
</DESCRIPTION><DESCRIPTION>
<PHRASE>people at sporting event </PHRASE>
<PHRASE>pageant contestants </PHRASE>
</DESCRIPTION>
<TAGS>girl face blond blue game crowd ... </TAGS>
</TEXT>
</DOC>

Figure 3.2: An sgml representation for structured Phetch documents.
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Chapter 4

Understanding Image
Descriptions

4.1 The Language of Descriptions

Behavioral experiments in image labeling have shown that, in an uncon-
strained setting, users tend to create short narratives to describe images
rather than limiting themselves to unordered lists of keywords (Jörgensen,
2001). Syntactic analysis of the Phetch data set supports this conclusion, as
well. The phrase fields that appear in Phetch descriptions are slightly more
than three words long, on average. The data set contains over 580,000 such
phrases. Phrases of length 1, which might be interpreted as tag-like annota-
tions, make up only 18% of these, with the remaining 82% consisting of 2 or
more words.

Among the phrases of length 2 or more, interesting syntactic patterns
emerge. To discover these, we applied the Stanford Dependency Parser
(Marneffe et al., 2006) to a random sample of 80,000 Phetch phrases, ex-
tracted from roughly 20,500 descriptions for 8000 images.

4.1.1 Syntactic Patterns

Typed dependency representation of the kind produced by the Stanford
parser has become increasingly popular as an alternative to phrase-structure
trees, due to its simplicity and accessibility. The Stanford typed depen-
dency representation has been used as the syntactic representation in systems
for Text Mining (Zhuang et al., 2006; Meena and Prabhakar, 2007; Banko
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et al., 2007; Zouaq et al., 2006; Chaumartin, 2007; Kessler, 2008) and for
Recognizing Textual Entailment (Adams et al., 2007; Blake, 2007; Chambers
et al., 2007; Harmeling, 2007; Wang and Neumann, 2007), among other tasks.
Figure 4.1 shows an example sentence and its dependency structure in two
equivalent representations: as a textual list of word pairs labeled with their
relationship, and as visual links that connect words from the sentence.

After parsing, we removed the lexical arguments from each parse result
and calculated the frequency of the remaining sequences of dependency la-
bels. The most common sequences, which we interpret as a syntactic pat-
terns, involve a single noun modified by an adjective (the amod relation) or
by another noun, either with a preposition (the prep and prep * relations)
or without (the nn relation). These patterns and their frequencies are shown
in Table 4.2, where notation is modeled on the Stanford typed dependencies
manual1.

Each pattern in 4.2 represents one entire phrase. Short patterns recur
most often, partly due to the fact that the average length of a phrase is only
3.5 words. By examining the overall frequency of individual dependency
relations, we can gain an understanding of which syntactic building blocks
are most common in phrases of all lengths. Table 4.3 gives these frequencies.

This analysis indicates that the contributors to the Phetch data set did
prefer to describe images using short phrases with some recoverable syntac-
tic structure. The overwhelming majority of phrases contain more than one
word, and of those only a few appear to be unordered lists of nouns. De-
pendency patterns consisting only of noun strings occur 5,794 times in our
parsed subset, ranging in length from 2 to 7. We might consider these, along
with single-word phrases, to be examples where the annotator was using a
bag-of-words style. The total of all such examples make up less than 20% of
the sample we used for this analysis.

4.1.2 Semantic and Rhetorical Patterns

In addition to characteristic syntactic patterns, descriptions in the Phetch
corpus exhibit recognizable semantic patterns. Consider the pattern “conj and”
from Table 4.2. A label composed of a string of nouns conjoined by “and”
seems effectively equivalent to a basic bag-of-words representation, using the
nouns as keywords. However, knowledge of the task informs us that while

1http://nlp.stanford.edu/software/dependencies manual.pdf
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Description: “guy in black and white pic”

Dependencies (list): amod(pic-7, black-4) conj and(black-4, white-6)
amod(pic-7, white-6) prep in(guy-1, pic-7)

Dependencies
(visual):

Figure 4.1: Dependency analysis, as a list and as a visual annotation.
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Pattern Examples

amod
“green leaves” “gold lid”
“white background” “uncensored video”

nn
“company logo” “cd cover”
“picture frame” “caribou antler”

amod nn

“white grave stones”
“red paper background”
“antique matchbox car”
“blue tennis shoes”

conj and
“black and white” “sword and shield”
“belle and sebastian”

prep in, prep on,
prep of,
prep towards

“forest in background”
“wall on left” “pile of logs”
“facing towards photographer”

nsubj amod dobj
“he has short hair”
“tub has white rim”
“cup has radiating lines”

Figure 4.2: Common dependency patterns of 2-4 words.
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Relation Total Instances % of Phrases % of Images

amod 41541 38.1% 93.4%
det 20516 18.7% 73.8%
nn 19892 19.2% 77.6%
dep 17737 16.2% 74.9%

nsubj 14639 15.4% 68.6%
dobj 8778 9.1% 53.5%

conj and 6532 6.5% 43.2%
pobj 6489 6.6% 45.2%

prep of 6465 6.8% 45.8%
prep in 6309 7.0% 44.2%
prep on 5580 6.0% 40.9%

Figure 4.3: Frequency of dependency patterns across phrases (col 2) and images
(col 3).

“sword and shield” describes a pair of entities that appear as the subject
of the image, “black and white” is a fundamentally different query, one
which specifies meta-information about the image2. The distinction be-
tween content-descriptions and meta-descriptions is an important seman-
tic/pragmatic feature that can contribute to errors in a bag-of-words retrieval
model3.

Descriptions also exhibit rhetorical structure: full sentences sometimes
span several phrases. Similar rhetorical features have been observed in com-
parable corpora but have not yet been exploited for retrieval purposes. An
example comes from the creators of the IAPR TC-12 corpus:

The first sentence(s) [in an image description] describe(s) the
most obvious semantic information (like “a photo of a brown
sandy beach”). The latter sentences are used to describe the sur-
roundings or settings of an image, like smaller objects or back-
ground information (“a blue sky with clouds on the horizon in the
background”) (Grübinger et al., 2006).

2Out of context, “black and white” could also refer to image content, however instances
of this phrase encountered in the Phetch data overwhelmingly refer to the image object
itself, as in “black and white picture”.

3see Chapter 6 for additional detail
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Totals
Images Words
4,061 93,720

Mean Sdv Min Med Max
Words per title 3 3 1 2 40

Words per description 15 21 1 8 301
Tags per image 15 15 1 11 399

Table 4.1: Overview of the flickr.com sample.

4.2 The Commonness of Descriptions

Descriptive labels of the kind that we find in the Phetch data set are a
common feature of online image collections. As a result, a data set like this
one, which supports training and evaluation of description-driven retrieval
systems, is relevant to the general problem of leveraging a rich and common
information source.

4.2.1 An Uncurated Data Sample from Flickr.com

To establish the frequency of descriptive labels in an uncurated data set,
we examine a sample of images extracted from the online photo-sharing site
Flickr.com. Using Flickr’s Java API, we downloaded 4,061 photo objects
and analyzed their structure. Flickr images can be annotated with a wide
variety of meta-data, including technical information about the equipment
that was used, geo-tags (latitude and longitude where the image was taken),
semantic keywords, titles, and full-text descriptions. For the purpose of this
comparison we downloaded image ids, titles, descriptions, and semantic tags
only. A summary of this sample is given in Table 4.1.

In our sample we found that almost every image was assigned a set of
tags, and 94% of the images were also annotated with a title. Not all images
were annotated with descriptions, but over 1,500 images from our sample
were, making up 38% of the total.

Examining the titles in detail, 40% consist of a single word, while 60%
are multi-word titles. Using the same dependency analysis as we used on
the Phetch corpus, we observe that dependency patterns consisting only of
noun strings occur more often in the Flickr sample. These patterns have
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B-day08
Blue-Car
Cat-In-A-Box
Forget-me-nots
ObservationGesture30
Self-Portrait
Steamed Crabs 03.30.2009
Thailand March 2009
TheRoadToContemporaryArt
Tippu home temple 4888w
oldphotos meandlauren1
littlechinagirlvint

Figure 4.4: Single-word titles with hidden syntactic structure from Flickr.com.

dependency structures composed of multiple nn relations, and they account
for 497 of the 3063 unique titles. Combining these instances with the unique
single-word titles, we can characterize roughly 1785, or 58%, of unique titles
as bag-of-words style annotations. Although this indicates that uncurated
data may contain less structure than a curated data set like the Phetch
corpus, we still see a significant number of parsable multi-word titles: nearly
half of all titles do exhibit multi-word syntactic structure.

This analysis may under-estimate the frequency of descriptive titles, since
in some instances authors used creative formatting to assign a descriptive title
to an image while using only one “word.” Some examples of the single-word
titles that appear in the Flickr sample are shown in Figure 4.4.

These examples speak to an important side-effect that results from fram-
ing the tasks of object annotation and retrieval in terms of keyword tags:
it may require humans as language users to break or abuse the structure
of the task in order to meet their communicative needs. Notice that a tag
like “TheRentalCar InThailand” is informative and transparent to a human
reader, but a retrieval system that uses keyword matching will be unable to
find this tag in response to queries like “rental car” or “Thailand”. Once we
propose to break the tag down into component words, we have started down
a path that requires the system to analyze and use multi-word descriptive
labels.
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Flickr Titles

Pattern Examples

amod “Casual Mohawk2”“Mysterious people”

nn
“Coffee Break” “Easter Bunny”
“Belly Button”

conj and
“Madness and Gladness”
“Orange and Red”
“Rocks and water”

Flickr Descriptions

Pattern Examples

nn
“Chicago Girls” “Animal Lovers”
“Lake Martin”

amod “double exposure” “Abandoned mansion”

det nsubj dobj
“The Judge calls Goldberg”
“this picture pleases me”

conj and, det conj and
“Julie and Patty”
“Shakespeare and the Engineer”

aux nsubj dobj “I should eat that”

Figure 4.5: Common dependency patterns from Flickr titles and descriptions.



4.2. THE COMMONNESS OF DESCRIPTIONS 47

Relation % of Descriptions % of Titles

nn 36.2% 27.5%
dep 30.0% 15.1%

nsubj 29.8% 8.6%
det 30.3% 6.9%

amod 27.0% 10.2%
dobj 22.7% 3.5%

advmod 18.1% 1.8%
aux 14.7% 1.5%
poss 13.0% 2.0%

conj and 12.0% 1.4%
prep in 11.7% 1.3%

cop 11.3% 1.1%
prep of 11.0% 1.6%

Figure 4.6: Percent of Flickr Descriptions (col 2) and Titles (col 3) where the
most common dependency patterns appear.

4.2.2 Syntactic Patterns

In Table 4.5, as in 4.2, the patterns that we see represent entire titles and
descriptions. The most common patterns are short because longer patterns
tend to be members of the “long tail” of a Zipfian distribution, appearing
only once or twice. Even closer similarity to the Phetch data emerges when
we examine the most frequent dependency relations, across titles and de-
scriptions of varying length. These relations are shown in 4.5.

Some features of Flickr titles and descriptions cause difficulties for the
parser. For example, 3-word titles commonly include a software-generated
image name in addition to the human-generated text, as in “oak tree IMG 1590”.
These titles lead to spurious dependencies when the parser attempts to link
the image name with the phrase structure of the text.

4.2.3 Semantic and Rhetorical Patterns

As in the Phetch data, we can identify common semantic and rhetorical
features in Flickr titles and descriptions. Some of these features are even



48 CHAPTER 4. UNDERSTANDING IMAGE DESCRIPTIONS

more prominent in the Flickr data. Phetch phrases, as discussed earlier, may
be categorized according to the context in which they must be interpreted:
some are grounded only in the image content (“doggies at play”) while others
deal with the image itself as an object (“old lithograph”). In addition to
these, Flickr titles and descriptions are sometimes grounded against the user’s
personal context (“this picture pleases me”; “us in our favorite spot”).

This third type of description is prominent in Flickr data. To estimate the
relative frequency of these classes more precisely, we performed an annotation
exercise on a small sample of 100 titles. Each title was coded according to
its semantic scope, as follows:

Code 1: The title is semantically grounded in the image contents (“Auck-
land City”, “Silver Pontiac”)

Code 2: The title is semantically grounded in the image object (“Poster”,
“Logo”)

Code 3: The title is semantically grounded in an unavailable context, typ-
ically interpreted to be a context of personal relevance to the image
owner (“I see you!”, “A Better Little Something”)

Code 4: The title is not semantically grounded; this code was assigned to
titles that were automatically generated by digital camera software
(“DSC 1326”, “IMG 1751”)

Out of this small sample, 44 titles were category 3 and 23 titles were
category 4, meaning that 67% of the titles were unavailable for semantic in-
terpretation, even by a human reader. The remaining 23% of labels conveyed
meaningful information that could be interpreted in the context of the image
contents or the image object itself.

These observations indicate one of the challenges to transitioning image
retrieval technology from development on curated data sets to general appli-
cation. Developing our retrieval system on the Phetch corpus will not allow
us to handle all of these features of uncurated data. However, the similarities
we see between these corpora indicate that techniques for improving retrieval
performance on Phetch can apply to data in the wild, as well.
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4.3 Conclusions

In this chapter we described the syntactic, semantic, and rhetorical structure
of image descriptions in the Phetch data set. We also explored the frequency
of multi-word image descriptions in an uncurated collection, a sample of over
4,000 images from the online photo sharing site Flickr.com. The annotations
included titles, descriptions, and tags. We established that more than half of
all unique titles and 96% of unique descriptions were composed of multiple
words with recoverable syntactic structure.

Predictably, many features of the Flickr sample demonstrated that un-
curated data is less regular and more difficult to analyze than data that is
collected in a controlled setting. Variance was higher in the Flickr sample
than in the Phetch corpus, both in terms of number of words (for titles,
descriptions, and tags) and in the re-use of syntactic patterns. In addition,
some of these features indicated that bag-of-words style annotation might be
more popular in uncurated data than in the Phetch corpus. Nonetheless, we
observed a significant number of titles and descriptions in the Flickr sample
that exhibited structure beyond bags-of-words.

We also discovered that the range of syntactic, semantic, and pragmatic
structures at play in the uncurated collection is wider than the range that
we observe in the Phetch corpus. For example, while descriptions in Phetch
may be categorized as dealing with image contents (“a picture of a black and
white dog”) or with image objects (“a black and white picture”), in Flickr we
observe additional classes, including descriptions that depend on a personal
experiential context for their interpretation (“Look out!”) and those with no
semantic context at all (“IMAGE2351”). In the process of identifying these
differences, we also found similarities that help us to understand the task of
description-based image retrieval.

These observations support the claim that the Phetch corpus, which is
structured to support automatic evaluation on the task of retrieving descrip-
tive image labels, bears a reasonable resemblance to the data “in the wild”
that it is meant to represent. As a result, the task of retrieving images based
on their Phetch descriptions is one with real-world significance.
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Chapter 5

Parameterizations for
Description Retrieval and
Baseline Results

5.1 Retrieval with Keywords

In Chapter 3, we introduced an experimental structure for image retrieval
using the Phetch corpus: one description per image is used to represent a
retrieval topic, while the remaining descriptions of the same image make up
a document in an indexed collection. Image identity is used as a proxy for
relevance, allowing us to evaluate automatically without further annotation.

Figure 5.1 shows how this experiment would work. The image has been
annotated with three descriptions. The first description has been used as
a query1, and the remaining two are reserved as DESCRIPTION fields in
one indexed document that represents this image in the collection. Terms
shown in bold represent keyword features that are shared by the indexed
document and the query. Retrieval based on keywords generally relies on
string-matching2 to determine whether the query and the indexed document
are descriptions of the same image, as they are in this example.

1query formulation is discussed further in Section 5.1.2
2refinement via spell-checking and stop-word/synonym lists may be applied
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Query Description: “stadium with pageant girls in the foreground”

Index Description 1: “olympic stadium, women in front with sashes”

Index Description 2: “people at sporting event; pageant contestant
girl”

Figure 5.1: Matching a query against indexed descriptions based on keywords.
Terms shown in bold are features shared by both descriptions.

5.1.1 Focused Retrieval

This retrieval paradigm can be seen as a type of focused retrieval, described
in the SIGIR 2008 Workshop on Focused Retrieval as a set of specialized
tasks including Question Answering, Passage Retrieval, and Element Re-
trieval (XML-IR). The defining feature of these tasks is that the object being
retrieved is a unit of text within a document:

Standard document retrieval finds atomic documents, and leaves
it to the end-user to locate the relevant information inside... Fo-
cused retrieval addresses information retrieval and not simply
document retrieval.3

This definition assumes that the unit of information is smaller than a
document in length, for example within a webpage on Elvis Presley where
only a sentence or two contains an answer to the question “Where was Elvis
born?”

Images in the Phetch collection are encapsulated as documents, rather
than sub-spans within documents. However, the alignment of one document
to one image means that the unit of information being retrieved is not greater

3http://www.cs.otago.ac.nz/sigirfocus2008/
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Collection4 Mean Document Size (KB)

GOV 15.2
GOV2 17.7
BLOGS06 Homepage documents 67.1
Phetch .565

Table 5.1: Document size of some TREC 2008 Web Track collections. Phetch is
shown for comparison.

than the user’s information need. Rather, we retrieve units that match the
information need in scope.

In addition, the average document in the Phetch corpus is just over 20
words long, and around 270 bytes in size. The text from a typical image with
three descriptions is comparable in size to a passage. For comparison, Table
5.1 shows the average document sizes for a selection of TREC test collections
from the 2008 Web track.

5.1.2 Indexing and Retrieval Tools

The Indri search engine (Strohman et al., 2005) is a component of the Lemur
Toolkit for Language Modeling and Information Retrieval5. Lemur is devel-
oped by Carnegie Mellon University and the University of Massachusetts,
Amherst. Lemur and Indri are freely available and can be downloaded from
the Lemur project website. The experiments described in this thesis are all
performed with Lemur version 4.5.0, Indri version 2.5.

Indri was designed for scalability, portability, and efficiency, and it is still
being supported and extended by IR researchers. These features make it an
attractive platform for experiments in information retrieval. In addition, the
Indri query language extends Inquery syntax (Callan et al., 1992), supporting
a variety of structured operators that are well-suited to the task of focused
retrieval. Indri developers describe this aspect of the engine design as follows:

The query language should support complex queries involving ev-
idence combination and the ability to specify a wide variety of

5http://www.lemurproject.org/
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constraints involving proximity, syntax, extracted entities, and
document structure.(Strohman et al., 2005)

All of these features play an important role in the experiments presented
in this thesis. Proximity features and field restrictions allow us to set a high
baseline that takes the known structure of Phetch image-documents into
account, while still modeling the content of those descriptions as unordered
sets of keywords.

Indri supports these features off the shelf, however the range of fields
that are accessible in structured queries are dependent on the document rep-
resentation we choose. The structure shown in Figure 3.2 is the baseline
representation that assumes no knowledge of world semantics, only an un-
derstanding of how descriptions have been assigned to images. Experiments
in Section 7.2 add semantic annotations to this structure using an sgml field
called SEM. Sample Indri queries that take advantage of this structure are
shown in Figure 5.2.

5.1.3 Procedure

To establish a baseline for retrieval performance on the Phetch data, we
identify a section of the data set, perform indexing and retrieval with Indri.

In our retrieval paradigm the main criterion for success is returning the
single image of interest, at the lowest rank possible. Since each description
corresponds to precisely one image, we seek a metric that describes, on av-
erage, where in the results list that image appeared. This metric is Mean
reciprocol rank (MRR). MRR is defined as the average, over all queries, of 1
divided by the rank where the correct document was found. The formula is
shown in Equation 5.1.

MRR =
1

|Q|

|Q|∑
i=1

1

ri

(5.1)

where ri is the rank at which the first relevant document was found for query
i.

Although metrics like Mean Average Precision (MAP) are more descrim-
inative in retrieval settings where multiple documents are relevant to each
topic, in our retrieval setting the first relevant document is known to be
the only relevant document. For this reason, MRR has been widely used to
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#combine(pageant girls blond face)

Plain Query: Ranks images by their combined match to all these terms

#combine(pageant.description girls.description blond.sem face.sem)

Field Restriction: Ranks images by their match to “pageant” and “girls” in
the description field, and to “blond” and “face” in the sem field.

#combine(pageant.(description) girls.(description) blond.(sem) face.(sem))

Field Model: Ranks images by their match to all terms, but scores “pageant”
and “girls” with a model trained on description fields, and scores “blond” and
“face” with a model trained on sem fields.

Figure 5.2: Indri structured queries.
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Query Description: “theglobalmuse com elite artist award for musical
excellence”

Index Description: “elite artist award - red text”

Figure 5.3: An example image composed mostly of text. Such images were
pruned from the 5A data set for these experiments.

evaluate known-item search (Ogilvie and Callan, 2003), another example of
focused retrieval that closely resembles the description-retrieval problem.

Data

The data set used in this chapter is a subset of the Phetch section 5A. These
images have each been annotated with at least five descriptions, allowing
us to isolate three sets of topics: one for training, one for development,
and one for testing. The remaining two descriptions are used as the index
representation of the image-document. In addition, we have pruned from
this data set all images that contain text in the image itself; an example
is shown in Figure 5.3. This pruning step is motivated by the observation
that images with a large percentage of text are poor representatives of the
labeled object retrieval problem. In contrast, images that have descriptive
labels represent the most difficult and most interesting area of the problem
space. The size of the pruned data set is described in Table 5.2. Like the
main sections of Phetch, this subset and the test, training, and development
queries can be reproduced by applying freely distributed scripts to the full
plain-text Phetch corpus6.

6Send email requests to atribble a©cs.cmu.edu
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Totals
Images Tokens

700 68,867

Mean Tokens per Description Total Tokens

Collection 18 32,326
Training Queries 17 12,098

Test Queries 17 12,329
Development Queries 17 12,114

Table 5.2: Word counts for the 5A data set, non-textual images.

Indexing and retrieval

After extracting and formatting the collection and the training queries, we in-
dex the collection using the binary program IndriBuildIndex7. IndriBuildIndex
can be configured to use built-in document transformation features, includ-
ing implementations of the Porter and Krovetz stemmers as well as stopword
removal. We specify these settings in a parameters file. In addition, to allow
the indexing system to capture the corpus-specific sgml fields that we have
used to model Phetch documents, we must add each of these fields to the
parameters file. An example is shown in Appendix A.

After indexing, we use the binary program IndriRunQuery8 to execute
retrieval for each of the training queries. IndriRunQuery takes a set of pa-
rameters that are parallel to the build parameters and can be specified in a
second parameters file. These parameters specify the location of the index
that will be searched, a limit on the amount of memory to allow for the
retrieval process, the maximum number of results to return, and optional
smoothing rules that are used to tune the retrieval model.

Document model

Indri implements a retrieval model that combines the language modeling
approach of Ponte and Croft (1998), which estimates word probabilities, with
the inference network approach of Turtle and Croft (1991) for combining
beliefs into a single document-level retrieval score. In order to gracefully

7http://www.lemurproject.org/lemur/indexing.php#IndriBuildIndex
8http://www.lemurproject.org/lemur/indexing.php#IndriRunQuery
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handle data sparseness and rarely- or never-observed language model events,
Indri applies smoothing strategies that mix the document-specific scores with
a background language model estimated from the entire collection. These
options are described in more detail on Indri developer Don Metzler’s web-
based documentation of the retrieval model9.

Output and Scoring

The output from IndriRunQuery conforms to the trecFormat style published
by the National Institute of Standards and Technology (NIST). For a run that
retrieves N documents per query, there are at most Q×N lines in the result
file, one line per returned document for each of Q queries.

To evaluate the results, we apply the trec eval tool, also published by
NIST10. This tool compares the result file to a second file that encodes the
known-relevant documents for each query. In our retrieval setting, there is
precisely one per query: the document that contains descriptions of the same
image as the one described by the query. This feature of the retrieval setting
makes Mean reciprocol rank (MRR) a good fit for our evaluations. MRR
measures the rank of the first good answer; in the single-relevant-document
setting, we are interested precisely in knowing whether the first good answer
is also the correct answer.

5.1.4 Results

The results of retrieval using this procedure are shown in Table 5.3. These
results serve as the baseline for evaluating refinements to the retrieval process
that are reported in Chapter 7. Performance on the training queries and test
queries is similar.

5.2 Additional Parameterizations

The system described in 5.1 compares a query description to an indexed doc-
ument description based on words that appear in both. In this section we
describe other feature sets, or parameterizations that can be used to deter-
mine whether a query and an indexed document describe the same image.

9http://ciir.cs.umass.edu/ metzler/indriretmodel.html#estimation
10http://trec.nist.gov/trec eval/
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Retrieval Settings Retrieval Performance (Mean Reciprocal Rank)

Test Set Training Set

KW (No Text) 0.8241 0.8172

KW (All Images) 0.9304 0.9259

KW=keywords

Table 5.3: Results of retrieval with the baseline model.

Experiments and results of applying these parameterizations are given next
in Chapter 7.

5.2.1 Keyword Refinements

Query refinement addresses the limitations of string-matching in keyword-
driven document retrieval. These techniques increase the sensitivity of the
system to near-matches, in addition to exact matches, for keywords form the
query. They include spelling correction, word splitting, word merging, phrase
segmentation, and stemming. An overview is given in Guo et al. (2008).

Query refinement (coupled with the corresponding refinement of index
documents) allows some of the non-literal matches from the example in Fig-
ure 5.1 to contribute to retrieval. The result of stemming our example query
is shown in Figure 5.4. The query word ”girl” now matches ”girls” in our
index descriptions. Rarer words like “stadium” are often misspelled, and
this type of refinement can correct these errors, as well. In some cases the
stemmed keywords are no longer full words; as a result we may refer to them
as query terms.

In performing query refinement to find a better match between the query
and our index descriptions, we assume that the query already contains the
right words, and those words are informative enough to distinguish matching
from non-matching index descriptions. The surface forms of the words only
need to be corrected or massaged on the morphological level.

Indri natively supports stemming, and spelling correction in SconeImage
is applied with a perl-module wrapper to the gnu ASpell utility11. Knowledge-

11http://search.cpan.org/˜hank/Text-Aspell/Aspell.pm
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Query Description: “stadium with pageant girl in the foreground”

Index Description 1: “olympic stadium, wom in front with sash”

Index Description 2: “people at sport event; pageant contestant girl”

Figure 5.4: Example of refined keyword representation: spell-correction and
stemming. Terms shown in bold are features shared by the query and index de-
scriptions.

augmented approaches have also been developed by other researchers for
some types of query refinement, including spelling correction (Ruch, 2002).
Although our current system does not appeal to the knowledge base during
the query refinement phase, the overall architecture lends itself well to future
experiments in this area.

5.2.2 Synonyms and Semantic Expansion Terms

Query expansion is the process of adding keywords to the original terms of
a query, with the goal of capturing a wider range of surface forms for the
underlying concepts in the original query. These terms capture synonyms or
other ontologically-related words, including hypernyms and meronyms.

The goal of query expansion is to capture words that did not appear
in the query, but easily could have. Consider for example the query term
”foreground” and the term ”front” in Figure 5.4. Two people had the same
concept in mind while writing these descriptions, but happened to choose
different words.

A knowledge base that provides conceptual distance between surface
words seems like the ideal resource to support this step in the retrieval pro-
cess. In practice, IR researchers have found it difficult to perform query
expansion in a way that significantly improves retrieval performance, par-
ticularly with knowledge-based techniques that rely on WordNet as their
lexical-semantic resource (Voorhees, 1994).

A central hypothesis of our work is that a knowledge base that combines
general lexical-semantic knowledge from WordNet with domain-specific and
format-specific knowledge (in our case, the format is image descriptions) can
be leveraged with success to improve end-to-end retrieval results. The knowl-
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Query Description: “stadium with pageant girl in the foreground
{pageant} {ceremony} {person} {female} {image
foreground} ”

Index Description 1: “olympic stadium, wom in front with sash {sash}
{pageant} {person} {female} {image fore-
ground}”

Index Description 2: “people at sport event; pageant contestant girl
{person} {female}”

Figure 5.5: Example of semantic expansion. Terms shown in bold are features
shared by the query and index descriptions.

edge base can be used to annotate the index descriptions as well as incoming
queries with concepts that appear in the text. These semantic features al-
low the retrieval process to condition on semantic as well as orthographic
properties of an image description.

Consider our example again, this time with additional features generated
by semantic annotation. The result is shown in Figure 5.5 Concepts from
the knowledge base are shown in curly braces, as in {concept}.

This example demonstrates how adding semantic expansion terms to our
parameterization of the image retrieval problem mitigates some deficiencies of
the keywords-only model. For some terms, the effect is identical to stemming:
“girl” and “girls” share the same root and they also share the same conceptual
entry in the knowledge base. For other terms, the addition of a semantic
feature captures similarity that is unavailable from the orthography: “sash”
has triggered the expansion concept {pageant}, which appears in the query.
“Woman” now matches “girl”.

5.2.3 Dependency Relations

Dependency relations were introduced in Chapter 4 as a way to find syn-
tactic patterns in image descriptions and titles. They can also be used
to reveal structural similarities between a query and index description for
the same image. Dependency structures have been applied with success in
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systems for Information Retrieval, Question Answering, and Textual Entail-
ment. Haghighi, et. al. provide an example of how dependencies contribute
to such systems:

Consider a Question Answer system searching for an answer to
When was Israel established? A representation which did not
utilize syntax would probably enthusiastically return an answer
. . . “The National Institute for Psychobiology in Israel was estab-
lished in 1979.” In this example, it’s important to try to match
relationships as well as words. In particular, any answer to the
question should preserve the dependency between Israel and es-
tablished. (Haghighi et al., 2005)

In description retrieval, as in question answering, dependency information
can help to recapture information lost by keywords alone. An example image
annotated with these structures is shown in Figure 5.6. When this query
was submitted to the baseline system, the image shown in Figure 5.7 was
retrieved. Although more words from the query appear in this alternative
description, the dependency annotation reveals the mismatch between “black
and white photo” and “black suit white shirt”.

5.2.4 Knowledge-Augmented Dependency Relations

This feature type combines the power of knowledge-base annotations with
the dependency structures just described. Semantic annotations function
much the same way as they do at the query expansion stage: when added to
dependency structures, they provide a layer of abstraction that allows looser,
more conceptual matching of these structures. Some additional dependencies
can be collapsed as a result of multi-word concepts that have been seman-
tically annotated. An example is shown in Figure 5.8. In this example, the
semantic augmentation of reveals that the phrase “black pic” and “white
photo”, which commonly occur when annotators describe black-and-white
images, are more alike than “white photo” and “white shirt”.

5.3 Conclusions

In this chapter we have described a retrieval experiment on the 5A section
of the Phetch corpus that uses a bag-of-words representation for queries and
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Query Description: “guy in black and white photo with lots of hair”

Dependency
Features:

Index Description: “black and white pic of a man wearing a jacket”

Dependency
Features:

Figure 5.6: Sample dependency annotation. Terms and relations in bold are
common to index and query descriptions; relations in dashed-bold are common
based on part-of-speech matching.
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Index Description: “photo of a guy whearing black suit, white
shirt, green tie”

Dependency
Features:

Figure 5.7: A second example of dependency annotation. Terms and relations
shown in bold are common to this index description and the query shown in Figure
5.6.
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Edge 1

Edge 2

Edge 3

Figure 5.8: Example dependency edges augmented with semantic concepts.
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indexed descriptions. We introduce the data, tools, and procedure for build-
ing a description-retrieval pipeline based on the Indri Indexing and Retrieval
System, part of the Lemur Information Retrieval Toolkit.

The results of this experiment set a strong baseline for the problem of
retrieving image descriptions. However we have also explored a series of
more sophisticated parameterizations of the problem that may lead to better
results: refined keywords, semantic annotations, and dependency relations.
Examples have shown that these types of features can bring queries closer to
indexed descriptions that should match them, and farther from descriptions
that should not.

Next, we will perform a more detailed error analysis of the cases where
the baseline system fails. In Chapter 6, we present a classification system for
these errors, and hypothesize ways that our advanced parameterizations can
reduce them. These hypotheses are tested in Chapter 7, where we implement
and test each parameterization.



Chapter 6

A Methodology for Error
Analysis in Description
Retrieval

6.1 Introduction

Error analysis allows us to understand how well the image retrieval system
is working and to prioritize the development of new features for the system.
In this chapter we introduce a methodology for analyzing the errors that a
description-based image retrieval system can make and for identifying the
features of a data set that trigger these errors. This analysis leads directly
to hypotheses about how to reduce errors of each specific type, which we
evaluate in Chapter 7.

6.2 Counting Retrieval Errors

In this section we investigate errors made by the retrieval system described
in Chapter 5 for the data set Phetch 5A. This data set is composed of 2,947
images, each annotated with 5 descriptions. In Chapter 5 one description was
used as a retrieval topic while two of the remaining descriptions were indexed
as a document in the collection. In this section we will vary the number of
descriptions that are indexed, resulting in a series of what-if analyses. We
start with a version of the 5A data set where only one description has been
retained for each indexed image (5A 1).

67
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Rank Frequency

1 2525 (85% of queries)
2 151
3 61
4 39
5 17
6 16
7 12
8 13
9 5
10 5
11+ (no result) 100 (3% of queries)

Table 6.1: Rank of the relevant image in baseline run of Phetch 5A training
queries.

A retrieval run using the baseline system results in MRR=0.9259 on all
training queries of 5A data set. Now we will look in more detail at the rank
of the relevant image within the result list for each query. If the relevant
image was returned at rank 1, no error occurred. A visual representation of
this case is shown at the top of Figure 6.1. The error cases in this figure are
described in the following sections. A retrieval run with perfect performance,
where the relevant image was retrieved first for every query, would achieve
an MRR of 1.0. An MRR of 11+ would indicate that no query resulted in
the relevant image being returned within the top 10.

6.2.1 Retrieval Failures

To identify the number and severity of errors, we look to the rank of the
relevant image in the result list for all of the queries in the current retrieval
run. The distribution of these ranks over all of the queries in the 5A data
set is shown in Table 6.1.

Table 6.1 shows that 85% of the queries resulted in the correct response
from the system, returning the relevant image at the top of the 10-best
list. However for 100 queries, the relevant image was not returned at all in
the top 10. These queries are of most interest for our error analysis; they
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Figure 6.1: Visual depiction of retrieval outcomes.
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represent a small but significant percentage of the training set where serious
errors occurred. We refer to these errors as retrieval failures. By addressing
retrieval failures, we have the opportunity to increase the overall performance
of the system.

6.2.2 Estimating Bounds on Improvement

How much of an increase in performance can we expect from correcting these
errors? Figure 6.2 shows the effect on MRR for the entire baseline retrieval
run. To generate this analysis, we manipulate the errorful result lists, in-
serting the correct relevant image. For example, for all result lists where no
relevant image was returned, we inserted the relevant image at rank 10. This
data point is shown on the far-left side of Figure 6.2. Other data points are
generated by inserting the relevant image at rank 9, 8, 7, etc. The experiment
indicates that if our knowledge-based retrieval methods can outperform the
baseline in these cases, while not disturbing the results in the rest of the data
set, we could improve overall MRR by as much as 3.8% on this data set. This
analysis indicates that it may be worthwhile to analyze and correct retrieval
failures by making improvements to the baseline retrieval algorithm.

For a more complete picture of the projected gain from error correction,
we extend this analysis to address errors other than retrieval failures. The
goal of making improvements to the retrieval algorithm would be to return
the relevant document as near as possible to the top of the 10-best list.
When we corrected retrieval failures, we pushed relevant images that were
returned at rank N > 10 into the 10-best list at rank 1. Figure 6.3 shows
the result of correcting errors where the relevant image was returned at rank
N = 10, 9, 8, etc. For each of these data points, we manipulate the result
list to place the relevant images at rank N = 1 instead. This experiment
projects the potential gain in performance that we could achieve from a re-
ranking algorithm that corrects mis-ranked relevant images in the 10-best
list returned by the baseline retrieval system.

This projection indicates that after correcting retrieval failures, effective
re-ranking of the images found by the baseline system can have a significant
impact on MRR. It supports the distribution shown in Table 1, in that a
steep gain is predicted if we can correct places where the baseline system
failed to differentiate correctly between similar images that were returned at
ranks 1, 2, and 3.
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Figure 6.2: Expected gains in MRR from correcting retrieval failures. Relevant
images were inserted into the result list at rank N = 10, 9, 8, etc. (shown on the
x-axis).
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Figure 6.3: Expected gains in MRR from correcting errors. Relevant images
found at rank N = 10, 9, 8, etc. were inserted into the result list at rank 1.
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6.2.3 Additional Data

Many retrieval errors are triggered by mismatches in the language used by
individual describers of an image. As we add more annotations from addi-
tional describers to an image-document, intuition tells us that it becomes
more likely that one of these labels will match the description given by the
query. If this is the case, we could also increase system performance on this
task by asking more annotators to describe each image in the index. How do
the projected gains from error correction compare with the results we would
achieve simply by adding more labels to the data set?

To investigate the effect of the number of descriptions on retrieval perfor-
mance, we re-introduce the descriptions that were ablated from the 5A data
set. This results in a series of retrieval runs, all using the same set of queries.
In each run we use additional descriptions per indexed image-document. The
result is shown in 6.4.

The first data point shows performance when images are indexed using
only the tags. Performance increases dramatically when we add a single
description to each indexed document. The expected gain begins to plateau
between four and five indexed descriptions.

In Figure 6.5we see these analyses shown together on a single graph. By
comparing the curve shown in purple (the result of adding descriptions) to
the curve shown in green (the result of correcting retrieval failures to rank 10,
9, 8, etc.), we see that correcting retrieval failures potentially achieves a simi-
lar beneficial effect on MRR as annotating image-documents with additional
2-3 descriptions. By annotating with 4 or 5 descriptions, we achieve higher
overall performance than we could hope to reach by correcting retrieval fail-
ures alone on this data set. However, if we assume that retrieval failures can
be corrected and we begin to re-rank the 10-best list as well, we achieve the
curve shown in blue, which yields higher performance than additional labels
for most points on the two curves.

6.3 Classifying Retrieval Errors

In Section 6.2, we discussed the number of errors produced by the baseline
retrieval system and projected the gains in performance we can expect from
correcting them. Now we turn to a discussion of what these errors look like
and why they occur. The experiments reported in this section were performed



74 CHAPTER 6. CLASSIFYING ERRORS

Figure 6.4: Expected gains in MRR from additional descriptions.
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Figure 6.5: Comparison of expected gains from correction vs. additional data.



76 CHAPTER 6. CLASSIFYING ERRORS

on section 3A of the Phetch data set.
When the system assigns the relevant image a rank of N > 1, at least

two errors have occurred (a visual representation of this case is shown on the
bottom half of Figure 6.1). First, the system compared a non-relevant image
description to the query and determined that they describe the same image,
when in fact they do not. This error is a type of false-positive judgment,
which we refer to as a precision error, because it dilutes the result list with a
non-relevant image at a high rank. Second, the system compared the relevant
image description to the query and determined that they did not describe
the same image, at least not confidently enough to rank the document first
in the result list. This is a type of false-negative judgment, which we refer
to as a recall error, since it implies that the system failed to recognize the
relevant image when it appeared.

6.3.1 Classes of Precision Error

Because image retrieval in this setting relies on the comparison of passages of
text, we will characterize precision errors according to the triggers that cause
two such passages to seem more similar than they really are. These triggers
make up the error types that we have annotated in our baseline retrieval run;
they are summarized in Table 6.2.

The vocabulary of error classes is motivated by the research goals of
this thesis. We have hypothesized that the bag-of-words representation for
image descriptions leads to errors because it fails to recognize certain types
of textual similarity. Specifically, the bag-of-words model fails to capture
semantic similarities that are obscured by surface features like word choice,
and it fails to follow the inferential chains of reasoning that human annotators
envision between their descriptions and the content of an image. As a result,
our error classes are composed of specialized cases of semantic and inferential
mismatch that we expect to see in the errorful retrieval runs.

We arrived at this vocabulary of error types in an iterative fashion, based
on observations in a sample of retrieval results from the Phetch 3A data
set. In a first pass, we annotated this development sample with free-text
descriptions of the evidence that a human might use to correct the errors
made by the baseline system. In a second pass, these annotations were
distilled by hand into a set of 14 phenomena that result in retrieval error.
These 14 classes were used to re-annotate the sample. After this pass, a final
revision of the annotation classes was made to focus on the most frequent
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Error Type Description and Examples

Ontology The wrong word meaning triggered a false match
“on the bank” matched “at the bank”

Faulty
inference

Match based on faulty inference; also includes false match
triggered by matching verbs with mismatched arguments
“green bandana” matched “green shirt”, “man skating”
matched “girl skating”

Contradiction Failed to recognize contradictions; could catch with a
model for contradiction
“black background” matched “blue background”

Missing
elements

Failed to penalize for missing major elements

“globe on a stand” matched “globe”

Quantification Failed to recognize quantification mismatches, in partic-
ular mismatched quantities of people
“a color photo” matched “3 photos”, “1 guy eating fries”
matched “a guy and a girl eating fries”

Negation Failed to recognize negation
“not smiling” matched “smiling”

Analogy Failed to penalize for a hedge or analogy
“tree shaped like a hat” matched “hat”

Media Failed to recognize mismatching media types
“cartoon” matched a photograph, “black and white
photo” matched a color image

Table 6.2: Classes of precision error.
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and clearly-defined classes. The resulting vocabulary contains 8 classes with
precise definitions in the precision-error and recall-error contexts. These
classes are not mutually exclusive; rather, a given retrieval error can be
annotated with all classifications that apply.

6.3.2 Classes of Recall Error

The eight error classes defined above can be applied to recall errors, as well,
but with slightly adapted definitions. In the case of recall errors, we are
interested in the triggers that cause two such passages to seem more dissimilar
than they really are. These triggers are summarized in Table 6.3. When
these types of mismatch occur, the indexed description for an image may be
incorrectly ruled out as a match for the query description of the same image.

Table 6.4 shows the frequency of these error types in an annotated sample
of the 3A data set. This sample contains 50 queries. For each query we
make two comparisons: we compare the query description to the indexed
description of the same image in order to annotate the recall errors. We also
compare the query description to the indexed description that was retrieved
at rank 1 for this query, in order to annotate the precision errors.

6.3.3 Frequency of Errors by Class

Although not all of the errorful results returned by the baseline system involve
errors from these classes, most of them do (90% of precision errors and 86%
of recall errors). Recall errors were annotated with 3.3 of these classes, on
average, and precision errors were annotated with an average of 2.5 classes.

The most frequently-appearing class in the case of recall errors were
Ontology-related; that is, surface-level mismatch between concepts that would
be identical or closely linked in an ontological representation of background
knowledge. This is an interesting result from the point of view of error-
correction strategies. When we move to an image representation that makes
use of a domain-specific ontology, we aim to address these errors. The ef-
fect will be less pronounced in the case of Precision errors, where only 14%
exhibited Ontology-related mismatches. This corresponds to our intuition
that by referencing an ontology, we could recognize synonyms that prevent
the baseline system from retrieving the correct image, increasing recall of the
retrieval system.
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Error Type Description and Examples

Ontology Failed to match words that would be the same or similar
classes in an Ontology
“shawl” failed to match “wrap”

Faulty
inference

Failed to make a relevant inference; could be fixed with
inference rules
“lips are puckered” failed to match “getting ready to kiss”

Contradiction Failed to match due to faulty contradiction
“black or blue background” failed to match “black back-
ground”

Missing
elements

Failed to match on major elements and ignore minor
missing elements
“guy smiling with glasses” failed to match “a guy smil-
ing”

Quantification Failed to recognize matching quantification, especially
matching quantities of people
“two guys” failed to match “a guy with another guy”

Negation Failed to match due to negation
“not smiling” failed to match “frowning”

Analogy Failed to recognize and match a hedge or analogy
“looks like a hat” failed to match “hat”

Media Failed to recognize matching media types
“photo” failed to match a photograph, “black and white”
failed to match “black line drawing”

Table 6.3: Classes of recall error.



80 CHAPTER 6. CLASSIFYING ERRORS

Error Type Frequency in Recall Errors Frequency in Precision Errors

Ontology 36 (72%) 7 (14%)
Quantification 34 (68%) 26 (52%)
Faulty inference 29 (58%) 20(40%)
Missing elements 23 (46%) 27(54%)
Contradiction 20(40%) 29 (58%)
Media 15 (30%) 14 (28%)
Analogy 4 (8%) 3 (6%)
Negation 4 (8%) 0 (0%)

Any 43 (86%) 45 (90%)
Total 165 126
Average 3.3 2.52

Table 6.4: Frequency of error classes.

The most frequently-occurring classification of precision errors relates to
contradiction. In these cases, the baseline system failed to recognize an
explicit contradiction between the query and the image description that was
retrieved at rank 1. A system with a model for recognizing contradiction
might be able to correct the baseline system in nearly 60% of the cases
where it currently makes Precision errors. This result supports recent work
on other textual inference tasks, where such models are already being applied
(e.g. Recognizing Textual Entailment, Question Answering).

6.3.4 Linguistic Features Contributing to Error

The precision errors and recall errors described above categorize sources of
mismatch that can occur between one person’s description of an image and
another’s. But what if we want to determine, for a given corpus of descrip-
tions, whether these errors are likely? To do this we need a new set of
intrinsic features of the image descriptions. In this section we describe on
possible set of such features and establish how they correspond in our data
set to precision and recall errors during baseline retrieval. Our features are
summarized in Table 6.5. Some of the classes are self-explanatory; for others
we give a detailed description in the sections below.
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Feature Description and Examples

Color
Describes visual color of image contents
“yellow shirt”

Size
Describes visual size of image contents
“big house”

Shape
Describes visual shape of image contents
“three triangles”

Texture, Pattern
Describes visual texture of image contents
“wood panels”

Spatial Arrangement
Describes visual layout of image contents
“side by side”

Frame of Reference
Description uses image as a frame of reference
“looking at camera”

Image as an Object
Refers to the image as an object
“logo”, “cartoon”, “portrait”

Nonrelevant Discourse
Describes nonrelevant commentary
“I can’t make out the text why is this image in here?”

Abstractions
Uses abstract or under-specified visual elements, includ-
ing image text
“cherry-shaped thing”, “letters spelling BACK”

Misleading Orthography
Spelling errors, abbreviations, or unusual word use
“2” for “two”, “thingy”

Inaccuracy
Gives inaccurate information with respect to the image
“shirt” for a dress, “house” for a hospital

Table 6.5: Error-inducing features in the Phetch 3A data section.
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Description: “small red triangle; blue question mark in the
middle; triangle has a shadow”

Figure 6.6: Sample image with visual features in the description.

Description: “two women; miss something; some sort of
pageant; both smiling”

Figure 6.7: Sample image without visual features in the description.

Visual features

Visual attributes describing the subject matter of an image occur in most of
the image descriptions we observed. These attributes include five subcate-
gories: color, size, shape, texture (including patterns) and spatial arrange-
ment. Example phrases that correspond to this type of feature are shown in
Table 6.5.

An example of an image that is described almost entirely with visual
attributes is shown in Figure 6.6. However not every image description uses
this type of feature. An example image description that uses none of the
visual features is given in Figure 6.7.



6.3. CLASSIFYING RETRIEVAL ERRORS 83

Image contents and image objects

Because an image is a representation of another object, most of the text of an
image description refers to the subject captured in the image. For example,
“black and white dog” in this context usually means that the annotator is
looking for an image where a dog with black and white fur appears. In some
cases, the image itself is the object of description, as in “black and white
photo”. This second type of language can be problematic for a bag-of-words
retrieval model since there is no feature that allows the system to know the
difference between ”black and white” in these two contexts.

Examples of this type of language include explicit references to the image-
object, like “photo”, “cartoon”, or “image”. They also include phrases that
describe visual attributes of the image-object, as in “grainy”, “in color”, or
“high-resolution”. Finally, they can be embedded in a sentence that has
mixed references to both the image contents and the image-object, as in
“photo of a girl”. Several examples from the Phetch 3A data set are shown
in Table 6.5.

In addition to identifying phrases that refer to the image as an object
of description, we also distinguish phrases that use the image as a frame
of reference. Phrases that describe image contents “in the background”, “in
front”, or “on the left” without any explicit point of reference typically imply
that the frame of reference is the entire image. More examples are given in
Table 6.5.

Nonrelevant, abstract, and misleading descriptions

In our data set, some content of the text descriptions is not relevant to the
task of retrieving the image in a collection. This type of off-task annotation
is likely to occur in any uncurated data set; as a result we would like to track
its frequency along with the other features listed here. A frequent source
of off-task commentary is hedging, as in the example “I think maybe it’s
a plant of some kind.” For the purpose of retrieving images based on this
description, the only truly relevant term is “plant”. One could imaging using
the rest of the description to deduce an uncertainty value for the query term
“plant”, but it seems counterintuitive to include the term “maybe” in the
query itself. More examples are shown in Table 6.5.

Like many types of human-generated text, the descriptions in our data
set are subject to spelling errors, poor word choices, and other idiosyncratic
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Description: “man; man in glasses; in suit; in suit; little bar-
code thingy”

Figure 6.8: Sample image with misleading orthography and non-relevant repeti-
tion in the description.

uses of language that are difficult for humans, as well as retrieval algorithms,
to handle. We annotate this type of feature in a description as Misleading
orthography. The example in Figure 6.8 shows a description with a nonstan-
dard word, “thingy”. Such words are unlikely to appear in the descriptions
from more than one image describer.

Finally, in addition to misleading uses of language, some image describers
simply provide inaccurate information. Common mistakes include references
to a “man” in a picture of a woman, or “boy” in a picture of a girl.

Frequency of intrinsic features

Table 6.6 shows the frequency of these features in our annotated sample.
For every query in the sample, we annotate three image descriptions with
these features: the query description, the indexed description of the relevant
image, and the indexed description of the non-relevant image returned by the
baseline system at rank 1. These are the same images that form the pairwise
comparisons we annotated in the section above, but this time annotation is
performed on each image description in isolation.

The features from our annotation vocabulary appeared in nearly every
image description that we annotated, but some were more prominent than
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others. Cells shown in bold in Table 6.6 correspond to features that appeared
in more than half of all of the image descriptions. These include color, spatial
arrangement, and image-as-frame-of-reference.

Most of the image descriptions mention color, however this feature can
be captured roughly at the single-word level. Spatial arrangement is more
interesting because it is inherently a relational feature of the description:
some element of the image occurs “on the left” of another, for example.
While the bag-of-words model is unable to distinguish between “chair on the
left of the table” from “table on the left of the chair”, a more sophisticated
model that takes some syntactic features into account might be better able
to handle descriptions with this feature, which occurs in well over half of the
descriptions in our sample.

The frame-of-reference category is also of particular interest in the context
of bringing better text representations to bear on the problem. To handle
image descriptions with this feature appropriately, a system must distinguish
between sentences like the two above, and sentences like “chair on the left”
(i.e. of the image frame). A symbolic model of image descriptions that has
separate representations for image content and the image object is a solution
that we will try for this task.

6.4 Conclusions

Given this background knowledge about the nature of retrieval errors in a
baseline retrieval run, we can identify some specific strategies for improving
retrieval performance. We have established a set of error classes and textual
features that contribute to retrieval error under the bag-of-words model. In
the next chapter we will establish a more knowledge-rich model for repre-
senting image descriptions and use that model to implement handlers for the
error classes described here: Ontology-based matching and inference, han-
dling of quantification over major content elements, negation, analogy, and
a model of media types.
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Feature Frequency

in Training in Relevant in Top-ranked
Queries Descriptions Descriptions

Color 43 (86%) 48 (96%) 46 (92%)
Size 15 (30%) 21 (42%) 19 (38%)
Shape 10 (20%) 15 (30%) 17 (34%)
Texture/Pattern 6 (12%) 10 (20%) 8 (16%)
Spatial Arrangement 25 (50%) 39 (78%) 34 (68%)
Frame of Reference 31 (62%) 33 (66%) 38 (76%)
Image as an Object 18 (36%) 29 (58%) 30 (60%)
Nonrelevant Discourse 18 (36%) 18 (36%) 18 (36%)
Abstractions 15 (30%) 21 (42%) 27 (54%)
Misleading Orthography 22 (44%) 25 (50%) 31 (62%)
Inaccuracy 10 (20%) 10 (20%) 6 (12%)
Any Feature 49 (98%) 49 (98%) 50 (100%)
Average N. Features 4.26 3.76 4.12

Table 6.6: Frequency of error-inducing features.



Chapter 7

Applied Textual Inference
Methods and Results

7.1 Introduction

In Chapter 5, we presented experimental results from a strong baseline re-
trieval system that models image descriptions from the Phetch data set as
bags-of-words. The error analysis in Chapter 6 reveals that many of the
errors made by the bag-of-words model can be framed in terms of specific
knowledge-based operations over the text of image descriptions. In this chap-
ter we implement additional models of retrieval that perform some of these
operations, and we evaluate the result on a subset of the Phetch data set.

In these experiments, we hypothesize the following:

• Augmenting the representation with concepts from a knowledge base
will improve performance on ontology-related errors

• Augmenting the representation with relations from untyped depen-
dency analysis will improve performance on faulty-inference errors

• We can combine these methods and features in a way that has minimal
impact on the non-error cases; i.e. correcting errors but not creating
new ones

This work shows how general techniques like query expansion and graph-
based semantic matching, which have been used in other ATI tasks with

87
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success, can be applied and specialized for a new problem instance (descrip-
tion retrieval). The hypotheses listed above connect what we have learned
from our error analysis to existing strategies from the field of applied textual
inference. Next, we implement a retrieval pipeline to test these hypotheses
and report the result.

7.2 Annotation with Ontology Elements

To validate the first hypothesis, we augment the representation of queries
and indexed image-documents by annotating them with concepts from an
ontological knowledge base (kb, or ontology). The goal is to make synonyms,
hypernyms, and slot-filler properties available to the relevance estimation
function that is already implemented in Indri. Figure 7.1 shows how this
annotation results in more features in common for two descriptions of a key
example image. Although two out of four content words from the query
are covered by the index description, three additional matching features are
found when semantic annotations are added. The term sash in the index
description has been annotated with the unique role-filling association that
it bears to the concept pageant, which captures an ontological similarity
between the two terms that is not available from the words alone.

7.2.1 Procedure

Inference engine

Many steps in this process are performed in the space defined by our knowl-
edge base. New concepts and relations must be defined, and operations over
these kb elements must be implemented and made available to the retrieval
process. We have implemented these components as modules for the Scone
knowledge-base system1, or Scone. They include new ontologies, inference
routines, and APIs, written in Lisp, which make use of the marker-passing
inference engine available in the core distribution of Scone (Fahlman, 2006).
In the remainder of this chapter we use “SconeImage” to refer to the extended
software suite that uses the Scone engine, but which is largely composed of
original software. Additional detail on the knowledge acquisition process is
given in Chapter 8.

1http://www.cs.cmu.edu/˜sef/scone/
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Query Description: “stadium with pageant girls in the foreground”

Semantic Features: girl female person pageant ceremony

Index Description: “olympic stadium, women in foreground with
sashes”

Semantic Features: woman female person sash clothing pageant

Figure 7.1: An example of knowledge-base annotation of a topic and index de-
scription. Terms shown in bold are features shared by both descriptions.

Data

As in Chapter 5, the data set used in this chapter is a subset of the Phetch
section 5A. These images have each been annotated with at least five de-
scriptions, allowing us to isolate three sets of topic labels: one for training,
one for development, and one for testing. The remaining two descriptions
are used as the index representation of the image-document. In addition,
we have pruned from this data set all images that contain text in the image
itself2. Like the main sections of Phetch, this subset and the test, training,
and development queries can be reproduced by applying freely distributed
scripts to the full plain-text Phetch corpus3.

Attaching concepts to descriptions

The SconeImage kb we developed for this thesis is a lexical-semantic re-
source, where many of the concepts and relations are attached to English
names that could trigger them4. To attach concepts from the ontology to an

2see Section 5.1.3 for additional detail
3Send email requests to atribble a©cs.cmu.edu
4see Chapter 8 for additional detail
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image description, we developed a SconeImage module that finds a greedy
alignment between words in the description and concept names from the
currently-loaded knowledge base. In the experiments reported here, no word
sense disambiguation is performed. The set of concept names that cover the
description string most completely are appended to the text of the descrip-
tion. In addition, each concept name is expanded according to a set of rules
that select hypernyms, role-fillers, and sister terms from the ontology. The
names of expansion concepts are also appended to the description text. This
results in the type of annotation shown in 7.1.

To test the effect on retrieval, we re-index the annotated collection so that
ontology concepts become available at retrieval time. Next, we annotate each
query using the same knowledge base.

7.2.2 Results

The results are shown in Table 7.1. This table includes the effect of spelling
correction, which makes very little contribution to performance on its own,
but which boosts the performance of the semantic annotation process and
contributes to the end result.

In our error analysis exercise, we identified retrieval failures in the training
set that could be attributed to lack of ontological knowledge in the baseline
system. Table 7.1 shows that the augmented system reduces these errors by
25%, a difference that is statistically significant5 with 95% confidence (p =
0.05). This result supports our hypothesis that knowledge base annotation
could reduce ontology-related retrieval errors.

The improvement on ontology errors from the training data is an intu-
itive result, since these errors are the examples that were used to inform KB
development. When we turn to the full training set, which has many more
examples, we see a reduction in error of 17%. This result is marginal statis-
tically but is still an encouraging finding in support of the hypothesis that
correcting ontology errors leads to better overall performance.

The effect on ontology errors in the test set must be inferred, since cal-
culating it directly would violate the experimental assumptions we make by
isolating the test set from the development and training process (annotation
of ontology errors requires the developers to compare the queries to index
descriptions by hand).

5single-factor ANOVA
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Retrieval Settings Retrieval Performance (Mean Reciprocal Rank)]

Test Set Training Set
Training Set
Ontology
Examples

KW 0.8241 0.8172 0.2801

KW+SP+KB 0.8508 (p = 0.1) 0.8494 (p = 0.06) 0.4571 (p = 0.05)

KW=keywords, SP=spell-correction, KB=annotation with kb concept names

Table 7.1: Results of spelling correction and knowledge-base annotation. ANOVA
significance is shown for improvement over the keywords baseline.

However, we see trends that indicate the effect may be there, based on
performance on the test set overall. Table 7.1 shows that the improvement on
the full test set is similar in magnitude to the improvement on the full training
set. Error was reduced by 15% compared with the baseline. Even with
marginal statistical significance of p = 0.1, this result shows some support
for the conclusion that these improvements will generalize well to new users
(i.e. unseen queries).

7.3 Graph Distance with Dependency Struc-

tures

To validate the second hypothesis, we add untyped dependency structures to
our representation of the image-documents and queries. Dependencies were
introduced in Chapter 3; they are syntactic connections between words that
represent a kind of abbreviated phrase structure tree. An example image
annotated with these structures is shown in Figure 5.6.

The syntactic structure can help us to differentiate descriptions that have
matching terms from descriptions that have matching structure. The image
shown in Figure 5.7 was retrieved by the baseline retrieval system. Although
more words from the query appear in this alternative description, the de-
pendency annotation reveals the mismatch between “black and white photo”
and “black suit white shirt”.
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7.3.1 Procedure

To apply dependency structures for improved retrieval, we use the list of
documents returned by the baseline system as a candidate list, then perform
additional processing to rerank the results. First, we annotate each query
and result description from the baseline run with a dependency structure,
storing the result in a semantic graph. Such a graph links vertices in the
syntactic dependency tree (i.e. words from the description) with concepts
from the knowledge base. As a result, we can calculate a similarity score
between the query graph and the graph for any image in the candidate list,
taking both semantic and syntactic similarity into account. This score is used
to re-rank the results from keyword retrieval. An overview6 of the retrieval
system that applies this process is shown in Figure 7.2.

Build the Dependency Graph

To build the dependency graph for an image description, we apply the Char-
niak constituent parser (Charniak, 2000) to the text and read the result into
a data object that represents the description in SconeImage. Once the con-
stituent parse is read in, a custom SconeImage module applies head-finding
rules based on Magerman (1995) to derive dependencies, which are also at-
tached to the image object. The structure of these objects in the knowledge
base mirrors the logical structure of image-documents in the Phetch cor-
pus, but with additional fields for parsed descriptions. A simplified visual
representation of this data object is shown in Figure 7.3.

Extract Features for Reranking

As we have seen in Figures 5.6 and 5.7, features from the dependency graph
can help to refine the way we compare queries to index descriptions. To apply
these features to retrieval, we extract them from our SconeImage graphs and
apply a function for combining them into a similarity score. This step is
labeled as “Feature Extraction and Hand-Tuned Scoring” in Figure 7.2.

Graph-based features are computed over a pair of graphs, one derived
from the current query description and one derived from a result in the
candidate list (pointing to an indexed document). Features correspond to

6Simplified to show processing steps; the full system has additional modules for caching
parses and graph features.
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Figure 7.2: Retrieval process with graph-based reranking.
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Figure 7.3: KB representation for image descriptions in SconeImage.
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sub-structures that are shared by the two graphs. For example, each of the
arcs shown in bold in Figure 5.6 is one positively-valued feature for the index
and query descriptions shown in that figure.

The first step in calculating these features is to find an alignment between
the query graph and the index-description graph. In general, these could be
any source graph, G and target graph, G′. After alignment, we apply a series
of tests that evaluate how closely the vertices and edges from G match their
counterparts in G′. Every test generates one graph-based similarity feature.
Vertex features are summarized in Table 7.2. These features are the building
blocks for the similarity function.

Each vertex feature implies two corresponding edge features. For exam-
ple, to calculate the string feature on a pair of edges (e, e′), we examine the
vertices (v1, v2) of e and (v′

1, v
′
2) of e′. If the value of string(v1, v

′
1) is equal to

1, then the value of origin string(e1, e2) is 1. If the value of string(v2, v
′
2) is

equal to 1, then the value of terminus string(e1, e2) is equal to 1. An example
of this calculation is shown in Figure 7.4.

7.3.2 Reranking

The separation of feature extraction from similarity scoring is a design choice
modeled on the alignment and scoring phases applied by Haghighi et al.
(2005) to the problem of recognizing textual entailment.

After features have been computed according to their descriptions in Sec-
tion 7.3.1, they can be combined manually or passed to a component that
uses them to train a learned combination function. First, we identify the
form of the similarity function, which includes several layers of free param-
eters. Next, we apply knowledge of the task to hand-tune the parameters,
yielding an initial estimate of graph similarity. Finally, we pass this estimate
along with the original similarity features into a machine learning architec-
ture, which learns new values for the parameters, based on training data.
The resulting trained similarity function is used to re-score elements from
the candidate list. To evaluate, we re-order the candidate list based on this
score and calculate the mean reciprocal rank for this new result file.
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Feature Definition

string =


1 if vi and v′

j have matching strings,
as in (“man”, “man”)

0 otherwise

pos =


1 if vi and v′

j have matching parts of speech,
as in (“man”+NN, “guy”+NN)

0 otherwise

syn =


1 if vi and v′

j have matching kb concepts,
as in (“guy”+adult male, “man”+adult male)

0 otherwise

hyp =


1 if vi is a hypernym of v′

j,
as in (“someone”+person, “man”+adult male)

0 otherwise

role =


1 if v′

j is a role in vi, as in
(“bouquet”+flower arrangement, “flower”+flower)

0 otherwise

path =


1 if a short path exists from vi to v′

j in the kb,
crossing roles and hyponyms, as in

(“bouquet”+flower arrangement,
“petal”+part of flower)

0 otherwise

Table 7.2: Vertex features for graph-based description similarity.
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Edge 1

Edge 2

Feature Value

string =
0, since ¬string(“white”,“black”)

and ¬string(“photo”, “pic”),

pos: = 2, since pos(“JJ”,“JJ”) and pos(“NN”, “NN”)

syn: =
1, since ¬syn({white},{black})

and syn({photograph}, {photograph})

hyp: =
0, since ¬hyp({white},{black})

and ¬hyp({photograph}, {photograph})

role: =
0, since ¬role({white},{black})

and ¬role({photograph}, {photograph})

path: =
2, since path({white} → {monochrome} → {black})

and path({photograph} → {photograph})

Figure 7.4: Similarity features for a sample pair of edges.
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A Function for Description Graph Similarity

Because our feature functions are directed, the similarity between two graphs
G and G′ may be asymmetric7. As a result we calculate the total similarity
between a query description Q and a candidate document C as a combina-
tion of the graph-based similarity scores sim(Q,C) and sim(C, Q), shown in
Equation 7.1.

totalScore(Q, I) = α1(sim(G, G′))) + α2(sim(G′, G)) (7.1)

where G is the set of graphs g1 · · · gi associated with descriptions of Q (usually
a single graph), and G′ is the set of graphs g′

1 · · · g′
j associated with descrip-

tions of I (usually 2-3 graphs). When more than one description-graph is
present in either of these sets, we must combine feature scores across all
descriptions, yielding a similarity score of the form shown below:

sim(G, G′) =
1

N

|G|∑
i=1

|G′|∑
j=1

graphSim(gi, g
′
j) (7.2)

where N = |G| × |G′|. The graphSim function calculates semantic coverage
of the graph g by the graph g′, based on coverage of vertices and coverage of
edges:

graphSim(G, G′) = β1vertexSim(gi, g
′
j) + β2edgeSim(gi, g

′
j) (7.3)

where vertexSim and edgeSim are weighted sums of the vertex similarity
features (VF) and edge similarity features (EF) described above:

vertexSim(g, g′) =

|V F |∑
n=1

λn × vfn(g, g′) (7.4)

edgeSim(g, g′) =

|EF |∑
m=1

Λm × efm(g, g′) (7.5)

7In ad-hoc retrieval, where the user types “pets” to find instances of dogs, cats, and
birds, we might leverage this asymmetry differently. In the description-retrieval task
presented here, queries are designed to match a particular instance (i.e. one image). As a
result there is less reason to assume that the query will have equal or greater granularity
than the indexed descriptions. As a result we compensate for the asymmetry by calculating
semantic distance in both directions.
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A Hand-Tuned Similarity Function

To set the parameters λ1 · · ·λn and Λ1 · · ·Λm we rank the vertex and edge
features according to how closely they represent matching kb elements. Syn-
onym match, for example, implies a nearer semantic similarity than a hy-
pernym match. The ranks are used as a guide to assign weights to each
feature by hand. This type of knowledge-based parameter manipulation has
been applied successfully in a variety of systems for textual inference, where
knowledge of the task is considered critical for success. Examples include
Haghighi et al. (2005), when tuning the relative weights of word-similarity
features in a system for recognizing textual entailment, and Varelas et al.
(2005), when tuning word-similarity features in a system for semantic re-
trieval of images and documents from the web. Although not guaranteed
to find optimal weights, those systems showed that this approach can yield
higher results than random or uniform weighting.

After some initial experiments to tune the parameters α1, α2, β1, β2 we
found little support for weighing forward- and backward- distances unevenly,
or for weighing vertex-matching more heavily than edge-matching. As a
result we set each of these parameters to 1 when calculating totalScore.

In the results reported in Section 7.3.2, rather than reranking on to-
talScore alone, we supply the hand-tuned score to a learning mechanism,
along with the feature list from which the score was derived. This mecha-
nism is described in the next section.

A Learned Similarity Function

The hierarchical parameters described in Section 7.3.2 reflect the intuitive
structure of the task, but are difficult to tune effectively by hand. As an
alternative to hand-tuning, we can format SconeImage similarity features as
input to a machine learning algorithm. By supplying the hand-tuned score
as an additional feature, we still allow the intuitive estimate to affect the
final outcome.

In addition to the hand-tuned score, the learned similarity function uses
complex features where a basic feature is composed with the lexical, syntactic,
or semantic context that triggered it (e.g. “pos-match and pos is NN”).
Again, the hand-tuned model influences the solution by defining the structure
of basic features. However the total number of complex features is too large
to be weighted by hand. The learning framework allows us to include these
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features in a principled way.

The results reported below were achieved by training an off-the-shelf per-
ceptron classifier based on Collins (2002). The classifier distinguishes graph
pairs that describe the same image from graph pairs that do not. To train the
classifier, we generate similarity features with SconeImage for every query-
candidate pair in the baseline retrieval output. When more than one descrip-
tion is available for an indexed image in the candidate list, we generate the
features for every such description independently.

For every query in the training set, at most one candidate contains de-
scriptions of the same image as the query. These descriptions are positive
training examples. The remaining descriptions are negative training exam-
ples. The classifier learns a set of weights λ1 · · ·λN for a linear combination
over all of the features f1 · · · fN that we calculate over graph pairs:

learnedGraphSim(g, g′) =

|F |∑
n=1

λn × fn(g, g′) (7.6)

where F is the set of all similarity features, and λn is the weight of feature
fn.

At test time, we use a fresh set of queries that were never seen by the
classifier during training (the test query descriptions from Phetch Section
5A). The test queries are run through the baseline retrieval system or through
the kb-augmented system described in Section 7.2. The results from this run
are sent to SconeImage for graph-feature extraction and scoring using the
hand-tuned similarity function. The output of the test run is one verdict
and similarity measurement for every description of every candidate in the
result list.

Before reranking, we combine the scores across all descriptions of a single
candidate by simply taking the maximum score, resulting in a modified ver-
sion of the sim function, shown in Equation 7.7. This equation also makes the
simplifying assumption that the query has only one associated description,
represented by the instance g rather than the set G.

maxSim(g,G′) = arg max
j∈(1···|G′|)

learnedGraphSim(g, g′
j) (7.7)

To rerank, all candidates for a single query are ordered according to their
maxSim score. The reordered list is formatted to emulate the TREC result
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file format, and can be scored using the trec eval program distributed by
NIST8.

7.3.3 Results

Results from this experiment are shown in Table 7.3.
As with ontology-related errors, we annotated inference-related errors in

the analysis described in Chapter 6. In comparison with the baseline, the
system that applied reranking based on dependency structures reduced the
error on examples annotated as inference errors by 24%. This represents a
large absolute improvement on inference errors as a result of adding depen-
dency information. Because the number of such examples is small ( 50), this
number is only marginally significant (p = 0.07); however, results on the
full training and test sets confirm that this reduction contributes to better
performance overall, underscoring the importance of these gains.

On the full training set, including many more examples than were seen
during KB development, error was reduced by 22% over the baseline, a result
that is statistically significant (p = 0.02). This improvement carried over to
the unseen test queries, where error was reduced by over 18%. This result
has marginal but very encouraging significance (p = 0.05).

Taken together, the results on ontology-related errors and inference-related
errors exhibit strong trends in support of the third hypothesis, that semantic
errors can be reduced without contributing to new errors in other parts of
the data set. Tables 7.1 and 7.3 show that overall performance increased
when these specialized types of retrieval failure were addressed. In future
work we could strengthen our confidence in these conclusions by running the
full experimental pipeline (KB development, training, and testing) on larger
sections of the data.

7.4 Analysis

7.4.1 Effect of Query Formulation

The Indri retrieval engine supports a rich structured query representation.
We performed an additional set of experiments to compare a naive encod-
ing of the descriptions with two types of structured query that distinguish

8http://trec.nist.gov/trec eval/
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Retrieval Settings Retrieval Performance (Mean Reciprocal Rank)

Test Set Training Set
Training Set
Inference
Examples

KW 0.8241 0.8172 0.2454

KW+SP+KB 0.8508 0.8494 0.4053

KW+SP
+KB+GPH

0.8567 (p = 0.05) 0.8575 (p = 0.02) 0.4251 (p = 0.07)

KW=keywords, SP=spell-correction, KB=annotation with kb concept names,
GPH=graph features for reranking

Table 7.3: Results of re-ranking. ANOVA significance is shown for the improve-
ment over the keywords baseline.

semantic annotations from the original text, allowing Indri to model them
separately. An example of these encodings is shown in Figure 7.5.

Indri query syntax is described in detail in the Indri Wiki9. Briefly,
the field-restriction syntax “term.field” matches term only if it appears in
the field section of an sgml index document, and scores the match us-
ing a document-level language model. The field-model query “term.(field)”
matches the term field in any context, but scores it using a language model
trained only on text in field sections of indexed documents.

Retrieval results using each of these encodings are shown in Table 7.4.
Both styles of query seem to bring the results down slightly, compared with
naively-annotated queries.

7.4.2 Effect of Semantic Graph Features

The results in Table 7.3 show that reranking based on features from a
syntactic-semantic graph can yield better retrieval performance. However,
before performing reranking, we have an opportunity to test a variety of
feature configurations. For example, we may test the contribution of the
syntactic graph features (such as matching vertices based on part-of-speech)

9http://www.lemurproject.org/lemur/IndriQueryLanguage.php



7.4. ANALYSIS 103

Naive
Query

#combine(pageant girls girl female person pageant cere-
mony)

Field-
Restricted

#combine(pageant.description girls.description girl.sem
female.sem person.sem pageant.sem ceremony.sem)

Field-
Modeled

#combine(pageant.(description) girls.(description)
girl.(sem) female.(sem) person.(sem) pageant.(sem)
ceremony.(sem))

Figure 7.5: Samples of query encodings.

Retrieval Settings Retrieval Performance (Mean Reciprocal Rank)

Test Set Training Set

Naive Queries 0.8508 0.8494

Field Restriction 0.8508 0.8416

Field Models 0.8465 0.8227

Table 7.4: Results of retrieval with naive vs. structured queries.
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Ranking Features MRR (Test) MRR (Train)

Kwds+
spell

Synt-
graph

KB
annot.

Sem-
graph

gphSim
score

√
0.8295 0.8216√ √
0.8404 0.8383√ √
0.8508 0.8494√ √ √
0.8535 0.8559√ √ √ √
0.8531 0.8584√ √ √ √
0.8528 0.8543√ √ √ √ √
0.8567 (p = 0.05) 0.8575 (p = 0.02)

Kwds=keywords, spell=spell-correction, Synt-graph=syntactic graph features for
reranking, KB-annot=query expansion with KB concepts (before reranking), Sem-
graph=semantic graph features for reranking, graphSim score=value of the graph-
Sim hand-tuned distance function

Table 7.5: Results of retrieval using combinations of syntactic and semantic
features for graph-based reranking. ANOVA significance is shown for improvement
over the keywords baseline.

independently from semantic features (such as matching vertices based on
hypernym association). In addition, we can assess the contribution of the
hand-weighted graph-matching score by testing results with and without this
score as a feature. Retrieval results using each of these feature configurations
are shown in Table 7.5.

7.4.3 Effect of Text within Images

In these experiments we focus on images without textual content, making
the assumption that images without text are the most interesting from a
retrieval perspective, and that their descriptions are the most interesting
from a textual inference perspective. These assumptions are supported by
experiments comparing performance of the baseline and augmented systems
across both types of images: images with and without textual content.

Table 7.6 addresses the hypothesis that applied textual inference tech-
niques can yield an improvement over all images, and that the contribution
is greatest on the images where the baseline system performs most poorly:
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Retrieval Settings Retrieval Performance
(Mean Reciprocal Rank)

Test Set Training Set

keywords - All Images 0.9304 0.9259

keywords - No Text 0.8241 0.8172

augmented - All Images 0.9397 (p = 0.09) 0.9387 (p = 0.02)

augmented - No Text 0.8567 (p = 0.05) 0.8575 (p = 0.02)

Table 7.6: Results of retrieval on all images from the 5A data set, vs. the subset
without textual content.

images without textual content. This improvement is marginally statistically
significant (p = 0.09), but it represents a strong trend that gives us additional
confidence in our positive results.

7.5 Conclusions

The experiments described in this chapter support the hypotheses that we
formed as a result of detailed error analysis in Chapter 6. Specifically, textual
inference techniques can lead to improved retrieval performance, in particular
on the most interesting types of images: images with more visual content and
less text than web buttons or logos, and images whose descriptions can only
be interpreted with the application of ontological knowledge and inferential
knowledge. In addition, these improvements can complement the strengths
of a strong bag-of-words baseline to achieve better overall performance on all
image types.

In these experiments we address two of the error types identified in Chap-
ter 6. It would be an interesting extension of this work to test specific tech-
niques that could reduce the remaining error types. For example, co-reference
resolution might be beneficial in reducing errors associated with quantifica-
tion mismatch, in particular as it relates to the number of people in an image
description. Techniques for contradiction detection have been developed and
tested for other textual inference problems, including recognizing textual
entailment and question answering. These techniques could also apply to
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retrieval errors caused by real or perceived contradictions between a query
and an index description.



Chapter 8

Knowledge Sources for Labeled
Image Retrieval

In Chapter 7 we presented results for a knowledge-based approach to re-
trieving descriptive image labels. This approach depends on a knowledge
base that supplies the vocabulary of semantic concepts, which are used for
annotation, and the relationships between concepts, which are used to calcu-
late description similarity. In this chapter we discuss how such a knowledge
base should be constructed, and we compare two different knowledge bases
in terms of their effect on retrieval performance.

8.1 Scone Knowledge Base System

The purpose of the kb is to make background knowledge available to the
retrieval system. To achieve this, it must be supported by a software frame-
work and Application Programming Interfaces (APIs). In this thesis we have
selected the Scone Knowledge Base System1 (Scone) as our kb framework.
The system includes the Scone engine, implemented in Common Lisp, and
knowledge bases. Knowledge bases are text files that encode statements in
the Scone representation language, which can be loaded into a running Scone
engine process.

The Scone engine supports adding, searching, and evaluating logical state-
ments based on marker-passing inference (Fahlman, 2006). To support the

1http://www.cs.cmu.edu/˜sef/scone/
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experiments described in Chapter 7, we have implemented additional Com-
mon Lisp components that extend Scone engine functions. These include
new ontologies, inference routines, and APIs that use Scone to annotate text
and measure the semantic distance between concepts. In the remainder of
this chapter we use “SconeImage” to refer to this extended software suite.

The organization of Scone and SconeImage is shown in Figure 8.1. Each
component listed in Figure 8.1 is implemented as a Lisp file. Files ending
in “-kb” are knowledge base files. Non-kb files contain subroutines that
operate on Scone structures but do not contain declarative knowledge. Code
that is original to the Scone Knowledge Base System is encapsulated in the
engine module. SconeImage code includes knowledge at the world, task,
and domain level, along with task-specific subroutines that read in parsed
text and calculate the distance between semantic graphs using the models
described in Section 7.3.2.

Knowledge bases in Scone use a frame-semantics formalism to represent
a network of concepts, or Scone elements. Scone supports taxonomic rela-
tionships, like “a flower is a plant” as well as role-filling relationships, like “a
flower has scent”. New non-taxonomic relations can be defined as well, with
instances of such relations being encoded as statements, like “a bird flies”.
Exceptions can be marked to handle relations that apply to most, but not all,
instances of a class, as in “a penguin is a bird that does not fly”. Scone also
includes a lexical lookup function that allows multiple strings to be attached
to any element. This feature supports the annotation process described in
Chapter 7.

Given such a knowledge base as input, routines defined in the Scone
engine calculate the answer to queries like “Is a rose a flower?”. Extensions
in SconeImage make higher-level calculations that depend on these answers,
like “what is the relationship between bouquet and rose?”. In all cases,
the answers returned by these calculations depend on the knowledge bases
that are currently loaded. In the following sections we explore how these
knowledge bases can be populated.

8.2 Retrieval with WordNet

WordNet (Fellbaum, 1998) is a free broad-coverage resource for lexical-semantic
knowledge that has been applied in many textual inference systems. It is a
practical starting point for testing knowledge-based algorithms, in particular
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Figure 8.1: The file organization of SconeImage knowledge bases and reasoning
modules.
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when the knowledge acquisition is outside the problem scope.

The structure of WordNet is a semantic network system where nodes in
the network capture synsets, or groups of cognitive synonyms with matching
parts of speech2. The semantic relations available in WordNet comprise a
subset of the structures available in Scone. They include taxonomic relations
among synsets (hyper- and hyponyms), part-of relations (meronyms) and
member-of relations (holonym), as well as more strictly lexical relations such
as verb-group membership and derivationally-related forms.

The current version of WordNet is Wordnet 3.0, with over 15,000 synsets
covering more than 200,000 word-synset pairs.

8.2.1 Procedure

To apply WordNet knowledge in SconeImage, we replicate the experiment
described in Section 7.2 using WordNet as the resource for annotation. As
in Chapter 7, we apply a greedy left-to-right annotation strategy. For each
token in an image description, we search WordNet for the first synset as-
sociated with the token, preferring nominal interpretations. No word sense
disambiguation is performed. A list of expansion synsets is found by search-
ing WordNet for hypernyms of the target synset. The target and expansion
synsets are added to an unordered set of annotations for the entire descrip-
tion, from which duplicates are removed. An example description with its
WordNet annotations is shown in Figure 8.2.

8.2.2 Results

When added to the retrieval pipeline described in Section 7.2, these anno-
tations result in a small improvement over the non-annotated baseline and
the spell-corrected baseline. Although statistical significance is low (p >= .4
using single-factor ANOVA analysis), this improvement is consistent across
the training and test queries from the data set used in Chapter 73. The effect
on Mean Reciprocal Rank is shown in Table 8.1.

2http://wordnet.princeton.edu/
3Phetch 5A section
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Image Description: “stadium with pageant girls in the foreground”

WordNet Features: stadium structure pageant ceremony girl woman
foreground view

Figure 8.2: WordNet annotation of an image description.

Retrieval Settings Retrieval Performance (Mean Reciprocal Rank)

Test Set Training Set

KW 0.8241 0.8172

KW+SP 0.8295 0.8216

KW+SP+WN 0.8349 (p = 0.5) 0.8306 (p = 0.4)

KW=keywords, SP=spell-correction, WN=annotation with WordNet concept
names

Table 8.1: Effect of annotation with wordnet synsets on Phetch section 5A, non-
textual images. ANOVA significance is shown for improvement over the keywords
baseline.
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8.3 Improved Knowledge Base Structure

The results in Table 8.1 support the hypothesis that knowledge may help on
this task, even at a very low development cost. The WordNet annotation
process in Section 8.2 is entirely automatic and reproducible for new data
sets. However the analysis in Chapter 6 indicates that some classes of error
can only be corrected by a system that applies reasoning and inference over its
knowledge base representations. The ad-hoc network structure of WordNet
was not intended to support this type of reasoning.

We hypothesize that a task-specific knowledge base, structured with the
challenges from Chapter 6 in mind, can improve performance even more. The
intuition that kb structure, particularly at the upper levels of the ontology,
plays an important role in its usability and effectiveness is supported by
related work on textual inference and knowledge engineering. Fan et al.
(2003), for example, describe the effect of ablating layers of the kb in a
system for resolving noun-noun compounds. Their finding was that concepts
from the upper levels of the ontology were critical to performance on that
task, and that they had a larger impact on performance than concepts near
the frontier.

8.3.1 Upper Levels: WordNet + DOLCE

The upper levels of WordNet were examined from an ontology-engineering
perspective in Gangemi et al. (2003). The authors identify classes of struc-
tural inconsistency in WordNet that make it difficult to interpret the network
connections as logical relations. These include conflation of subsumption and
instantiation relations, confusing object-level (taxonomy of objects) and met-
alevel (taxonomy of properties that objects may take), and heterogeneous
levels of generality, among others. To correct these errors while still leverag-
ing the broad coverage of the WordNet database, Gangemi et al. introduce
the Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE),
an open-source ontology published through the WonderWeb project4.

We apply these findings to SconeImage using a knowledge-development
strategy similar to the work described in Fan et al. (2003). In that work,
the authors select an existing upper-level ontology and re-connect a subset
of WordNet concepts to that ontology, while also adding several task-specific

4http://wonderweb.semanticweb.org
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concepts. In the SconeImage kb, we use the DOLCE upper ontology (Masolo
et al., 2003) for the top levels, and then apply a mapping from DOLCE to
WordNet following Gangemi et al. (2003), with some task-specific modifica-
tions.

An abbreviated description of the resulting kb is shown in Figure 8.3.
The Scone kb files are provided in Appendices B and C.

8.3.2 Acquiring Knowledge from Training Data

After the new upper-level SconeImage kb has been constructed, we perform
a round of knowledge acquisition based on the training queries from the
Phetch 5A data set. The baseline retrieval run on this data set resulted in
50 retrieval failures, cases where no relevant image was found in the result
list. These failures were classified according to the procedure described in
Chapter 6. To expand the knowledge base, a developer examined each of the
retrieval failures annotated as Ontology or Faulty Inference errors. The train-
ing query and collection document were compared, and terms were added to
the ontology to compensate for the error.

An example is shown in Figure 8.4. The training query uses the term
“girls” where the index description uses “women”. To compensate, the devel-
oper adds new elements woman n 1 and girl n 1 to the SconeImage ontology,
connecting them to the common ancestor female n 1. Naming conventions
for these elements reflect the fact that they must connect to the WordNet
concepts on the frontier of the upper-level ontology described in Section 8.3.1.
As a result, the new elements are selected to correspond with an appropri-
ate term from WordNet, but their arrangement in the ontology may differ
significantly from their placement in WordNet.

This development strategy is consistent with the analysis that WordNet is
most useful for associating strings with lexical-semantic concepts, while the
arrangement of concepts into logical structures can be improved through con-
nection to an ontology like DOLCE and an inference platform like Scone. Fig-
ures 8.5 and 8.6 provide an example of this effect. While the terms man, boy,
woman, and child all appear in the WordNet hierarchy, the structure con-
necting “man” and “boy” is different from the structure connecting “woman”
and “girl”. This type of inconsistency means that an inference rule of the
form if the query mentions a subtype of person, expand with sister terms
would correct one of these lexical mismatches but not the other. We prefer
an ontology structure that uses parallel structures for conceptually parallel
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Figure 8.3: Top level of the SconeImage Ontology, adapted from DOLCE +
WordNet. (Gangemi et al., 2003)
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Training Query
Description:

“stadium with pageant girls in the foreground”

Index Description: “olympic stadium, women in foreground with
sashes”

New Ontology
Entries:

woman n 1 woman, female n 1, girl n 1 girl

Figure 8.4: Example of knowledge acquisition from training data. KB elements
for “woman” “girl” and “female” are added, along with English strings that trigger
“woman” and “girl”. Stemming at retrieval time compensates for the singular-
plural variation.

relationships among concepts.

8.4 Retrieval with SconeImage Ontologies

8.4.1 Procedure

This knowledge development process results in the SconeImage knowledge
architecture shown in Figure 8.1. This is the architecture used for experi-
ments in Chapter 7, and the procedure for applying it is similar to the Word-
Net case. A SconeImage module implemented in Lisp performs a single-pass
search over the words in an image description for elements in the SconeImage
ontologies that are triggered by each word. All elements are added without
performing word sense disambiguation. The resulting list of element iden-
tifiers5 is concatenated with the original description to form the annotated
query or collection description. Indexing and retrieval are performed using
Indri under the same model described in Section 7.2.

5element names are mapped to a list of abbreviated integer ids of the form scone1,
scone2, .. sconeN.
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Figure 8.5: WordNet type hierarchy for ’woman’ and ’man’.

Figure 8.6: SconeImage type hierarchy for ’woman’ and ’man’.
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Retrieval Settings Retrieval Performance (Mean Reciprocal Rank)

Test Set Training Set

KW 0.8241 0.8172

KW+SP 0.8295 0.8216

KW+SP+WN 0.8349 (p = 0.5) 0.8306 (p = 0.4)
KW+SP+KB 0.8508 (p = 0.1) 0.8494 (p = 0.06)

KW=keywords, SP=spell-correction, KB=annotation with kb concept names,
WN=annotation with WordNet concept names

Table 8.2: Comparison of knowledge resources for annotated description retrieval.
ANOVA significance is shown for improvement over the keywords baseline.

8.4.2 Results

The results of this experiment are shown in Table 8.2. The results from Table
8.1 are repeated in this table for comparison. Under the same experimental
conditions, the SconeImage ontology results in better performance than the
WordNet ontology. This improvement is consistent across training queries,
on which kb development was performed, and test queries, which were not
seen by the developer.

The developer did observe examples from the indexed collection at kb
development time. As a result this experiment does not establish portability
of the kb across a new collection of images. However the consistency of
improvements from training to test queries does support the hypothesis that
knowledge development is portable across users of the image retrieval system.

The statistical significance of the result using Scone is marginal (p = 0.1),
but still supportive of the improvement trend that we see across the training
and test sets. This trend is favorable toward the analysis that Once an
ontology for a new collection has been developed, any number of unseen users
should expect improved results when they pose queries to the knowledge-
augmented system.
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8.5 Conclusions

In this chapter we described two alternatives for knowledge base development.
First, we used the open-source semantic lexicon WordNet to reproduce the
semantic annotation experiments from 7. The result was an improvement
over the baseline results given in Chapter 7 that was consistent across training
and test queries, but that did not have strong statistical significance.

Next, we introduced ontology engineering strategies that have appeared in
related literature for knowledge-based textual inference tasks. We developed
a second knowledge base with an improved upper-level structure based on the
Dolce ontology. To this structure we added hand-engineered concepts and
relations that were based on annotated errors in the training queries from
the Phetch 5A data set. This knowledge base yielded improvements over the
WordNet-based system and over the baseline, which is an encouraging result
although the statistical significance is marginal (p <= 0.1).

These results give some support to the hypothesis that knowledge helps
in this application, and that better knowledge helps even more. As the
SconeImage knowledge base continues to grow in breadth, while retaining its
well-structured upper-level ontology, we would expect to see some additional
improvement in retrieval performance, within the limits established by the
corrective what-if analyses of Chapter 6.



Chapter 9

Conclusions

9.1 Experiments and Findings

The main claims of this work are as follows:

1. Detailed error analysis of a strong baseline system for description re-
trieval shows that human language users rely on specific classes of world
knowledge and inferential operations to encode features of image de-
scriptions. This analysis reveals the nature of description retrieval as
an instance of textual inference.

2. We can improve the system’s ability to decode and use these features by
adding semantic, syntactic, and hybrid features to our representation of
descriptions, and by using these features in new functions for estimating
description similarity.

3. These corrections improve performance not only on our errors of inter-
est, but on overall retrieval quality.

In the process of evaluating these claims, we have presented a series of ex-
periments. In Chapter 4, we counted the most frequently-occurring syntactic
patterns in the Phetch corpus and in a corpus extracted from the website
Flickr.com. We found that descriptive text of the type found in Phetch is
also common in Flickr, and that syntactic, semantic, and rhetorical structures
that appear in Phetch are also relevant for Flickr. Curated, annotated data
sets like Phetch are critical for allowing diverse research groups to compare
results across comparable experimental conditions. The findings presented in

119
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Chapter 4 are a positive indication that such curated data sets, in particular
Phetch, accurately represent the problem of description retrieval in general.
To our knowledge, this experiment and its result are novel.

In Chapter 6, we classified retrieval failures that occurred in a baseline
retrieval run, according to the cause of the error. We calculated the fre-
quency of each class of error, finding that over 90% of retrieval failures were
attributed to one or more classes from this set. The depth of analysis and
vocabulary of error classes are novel contributions that increase our under-
standing of the problem of description retrieval.

In Chapter 7, we implemented and evaluated new retrieval pipelines
that were aimed at reducing the errors identified in Chapter 6, specifically
ontology-related errors and errors attributed to faulty inference. We hypoth-
esized that annotation with concepts from a well-structured knowledge base
would improve performance on queries that triggered baseline-system errors
due to ontological mismatch. Experimental results on the training set re-
vealed a 25% reduction in error for these queries. Overall reduction in error
was over 17% on the training set. On test queries, overall error was reduced
by over 15%, compared with the baseline. Although the improvement has
marginal statistical significance (p = 0.1), it indicates that this approach
shows promise for impacting not only interesting test cases, but overall re-
trieval performance.

We further hypothesized that we could reduce faulty-inference errors
by augmenting the retrieval system with features from a hybrid syntactic-
semantic graph representation of image descriptions. We presented a function
that combines these features into a similarity score for a query description
and an indexed description, along with a machine-learning architecture for
tuning the free parameters of this function. By applying this function to
rerank the results from annotated retrieval (described above), we reduced
the error on training queries classified as inference-dependent by 24%. This
contributed to an overall reduction of error of 22% on training queries, com-
pared with the baseline. On test queries, we see a similar reduction of over
18% overall, which is statistically significant1 with 95% confidence (p = 0.05).
Follow-on experiments in Chapter 7 analyzed the effect of query formulation,
contribution of syntactic versus semantic graph features, and evaluation on
larger data sets.

1single-factor ANOVA analysis
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In Chapter 8, we compared the retrieval benefit that we achieved with the
task-specific knowledge base to the results of annotation with all of WordNet,
a lexical-semantic resource that has much broader coverage, but less reliable
support for inference. We found that annotation with WordNet yielded per-
formance above the baseline and below the level achieved with the custom
KB. This result was replicated on a training set of queries, for which the
custom knowledge base had been hand-engineered, as well as on a test set of
queries that were never seen by the author of the knowledge base. As with
the results from Chapter 7, the trend we observe when moving from training
to testing queries gives us confidence that the advantage we gain from the
custom KB does not depend on the lexical content of the descriptions, but
rather on the quality of the knowledge base and the appropriate encoding of
semantic relations that are relevant to this task.

9.2 Contributions

9.2.1 Summary of Contributions

This work establishes the result that structure of the knowledge re-
sources affects results in “knowledge-based” ATI systems. Related
work on knowledge-based approaches to applied textual inference tasks often
rely WordNet or similar general-purpose resources that are essentially lexical
in nature. While the value of these resources is unquestionable, they were
not developed to support reasoning. Our error analysis supports the claim
that humans do apply background knowledge for reasoning about matching
features in multiple descriptions of a single image. In addition, our exper-
imental comparison in Chapter 8 shows that a well-structured knowledge
resource that applies ontology engineering principles at the highest levels
can lead to better performance. This approach has costs as well as bene-
fits, but our work provides evidence for the claim that when you have good
knowledge, it helps.

This work establishes benchmark results for retrieving labeled
object descriptions. The experiments described in Section 9.1 establish a
battery of results that can be used as baselines for subsequent work on this
topic.

This work establishes a vocabulary for sources of error in de-
scription retrieval systems and established the frequency of those
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errors in a sample corpus. Information retrieval has become an intensely
empirical field, with detailed analysis techniques to explain the amount of
error in a given experiment. However to our knowledge, our work is rare in
its analysis of why errors occur. As we have shown, this level of analysis
leads directly to system improvements that address interesting, compelling,
and significant retrieval errors.

This work produced reproducible experimental sections in an
evaluation corpus for applied textual inference. Shared evaluations
have become a crucial tool for moving the state of the art forward in language
technologies. We have performed analysis and refinement of the raw data in
the Phetch corpus that makes appropriate for use in such a shared evaluation.

In particular, we have identified subsets for training and evaluation that
allow researchers from multiple sites to compare their retrieval results in ex-
perimentally clean conditions (by testing on queries that have been isolated
from the development and training queries). We have authored tools for repli-
cating these evaluation subsets and provide those tools without restriction
upon request. We also established experimentally the structural similarities
between the Phetch corpus, which was collected in controlled conditions, and
uncurated image collections. Finally, we performed a principled comparison
between the Phetch corpus and existing corpora for image retrieval.

9.2.2 Refined Vocabulary for Sources of Error

In connecting this work to other problems in the class of applied textual in-
ference and the field of language technologies in general, one useful exercise
is to generalize the error classes we identified for the problem of description
retrieval onto the general linguistic phenomena they may represent. An ex-
ample of such a generalization is proposed in Table 9.1. Some classes from
the original vocabulary have been removed. Deleted classes are described in
Table 9.2.

To fully explore the significance of the general classes is outside the scope
of this thesis. However we can propose a sample methodology for this explo-
ration, similar to the one we applied in Chapter 6. The first step would be
to perform 1-2 rounds of sample annotation with these candidate categories,
refining the category descriptions until they are consistent and applicable
as simple “yes/no” tests for membership, given a pair of texts. During this
phase additional categories might also be added.

After the definitions are refined, a list of examples should be associated
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Error Type Updated Description and Examples

Lexical Ambiguity Term-level similarity that obscures meaning-level dif-
ferences
“at the bank counter” vs. “on the river bank”

Accommodation Term-level mismatch that obscures or falsifies prag-
matic similarity
“shawl” vs. “wrap”; “rectangular” vs. “rounded rect-
angle”

Accommodation-
Analogy

Hedges or analogies obscure or falsify pragmatic con-
nection between phrases
“tree shaped like a hat” vs. “hat”

Accommodation-
Contradiction

Elements that reflect pragmatic conflict under real-
world constraints, even after interpretation
“black background” vs. “blue background”

Incorrect
Attachment

Matching semantic predicates with mismatched argu-
ments, independent of the surface form
“green bandana” vs. “green shirt”, “man skating” vs.
“girl skating”

Quantification Quantification mismatches between entities or sets
that should be co-referent
“a color photo” vs. “3 photos”, “1 guy eating fries”
vs. “a guy and a girl eating fries”

Negation Negated semantic predicates, independent of the sur-
face form
“not smiling” vs. “smiling”; “examples of dogs, no
corgis”

Table 9.1: Candidates for general linguistic causes of mismatch between seman-
tically similar texts. Accommodation has two sub-classes, Analogy and Contra-
diction.
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Original Error
Type

Mapped Error
Type

Description and Examples

Missing
elements

None Treat as partial matching, apply other
classes as appropriate
“globe on a stand” vs. “globe”

Media None Treat as a specialization of the Contradic-
tion class
“cartoon” vs. a photograph, “black and
white photo” vs. a color image

Table 9.2: Error classes from the original vocabulary that were removed in the
general vocabulary.

with each to help annotators make a concrete connection to what each cat-
egory means. These definitions could then be dropped into an annotation
interface, similar to the web-based tool we developed for our exercise in
Chapter 6. A screenshot of this tool is shown in Figure 9.1.

With new category definitions and an annotation tool in place, an infor-
mative exercise would be to annotate several data sets from different example
problems within the ATI class (entailment, description retrieval, paraphras-
ing, summarization, question answering) in order to compare the distribution
of these phenomena across those problems.

9.3 Future Work

9.3.1 Summary of Future Work

Address more error types from Chapter 6

In this work we identified eight classes of error that contribute to retrieval
failures in the baseline system. We focused on two of these errors by hypoth-
esizing system improvements that would address them, and then measuring
the effect both on overall performance on errors of our two target types (er-
rors attributed to ontological mismatch and faulty inference). A natural
extension of this work would be to address additional classes of error iden-
tified in Chapter 6. Media-related errors, where a query description refers
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Figure 9.1: Screenshot from the web-based annotation tool used for the analysis
in Chapter 6.

explicitly to a “drawing” while the index description returned by the base-
line says “photograph”, could also be amenable to techniques presented here.
One could imagine that a layer of the ontology could distinguish media types
based on research on common subclasses of image, particularly on the web.
It would be interesting to discover whether ontology development alone, inte-
grated into the existing annotated retrieval system, could reduce these errors,
or whether we would require additional modification of the retrieval pipeline
as well, for example in a separate binary classifier that returns an estimate
of whether the two image descriptions have matching media types.

This type of future work could also incorporate additional Natural Lan-
guage Processing tools. Co-reference resolution might be beneficial in reduc-
ing errors associated with quantification mismatch, in particular as it relates
to the number of people in an image description. Techniques for contradic-
tion detection have been developed and tested for other textual inference
problems, including recognizing textual entailment and question answering.
These techniques could also apply to retrieval errors caused by real or per-
ceived contradictions between a query and an index description.
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Extend the Knowledge Framework with transformation rules in
addition to KBs

The solution described here relies on the knowledge base to ground concepts
and encode important relations, including paths (e.g. sash is a garment worn
at a pageant). However, the features we extracted from this encoding only
leverage a small part of the power of the knowledge base. A natural extension
of the system described here would be to add knowledge-based interpretation
rules that could work to overcome more of the structural differences that
occur between descriptions at the syntactic level.

Some examples along these lines include the work by Fan and Porter to
resolve Loose Speak in question encodings (Fan and Porter, 2004) and the
work by Barnett et al. (1990) to perform semantic transformations in the
context of knowledge-based machine translation.

Leverage structured retrieval architectures

As we describe in Chapter 2, the work presented in this thesis builds on con-
temporary research in information retrieval and in textual inference. Natural
extensions of the experiments we describe here could re-connect our results
with threads in these two areas. For example, this thesis focuses on examin-
ing layers of world knowledge that are required to solve the most interesting
cases of description retrieval. Contemporary research on IR has generated
alternative architectures for structured retrieval, but has been agnostic with
respect to what features should be included in these structures and why
(Bilotti et al., 2008). A promising experiment could combine the knowledge
base developed in this thesis with one of these architectures, possibly yielding
higher accuracy than either system could achieve alone.

9.3.2 Extension to Other ATI Tasks

Figure 9.2 shows a diagrammatic description of the relationship between
Language Understanding and several examples of applied textual inference
problems. This diagram captures the common features of ATI tasks as we
described them in Chapter 1. Given a pair of texts, Text A and Text B,
an ATI system should perform some processing over both, then calculate a
function F over the result of this processing in order to arrive at a decision
regarding the relationship between Text A and Text B. This relationship
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Figure 9.2: Diagrammatic description of applied textual inference Tasks. They
are recognized to be hard enough to require some amount of language understand-
ing for success, but they are evaluated based on the accuracy of a decision output.
Entailment, Paraphrasing, and other well-known tasks are shown here as examples
that meet this description. Image-identity is shown as a new example.
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may be a question of Entailment: does A entail B; or of another relation:
does A paraphrase B; is A an answer for B. For each of these problems,
the relation is assumed to be dependent on some, though perhaps not full,
language understanding.

In this work we frame the retrieval of image descriptions as a problem
that fits the ATI mold. Error analysis showed that recognizing the relation
image-identity( A, B ) does sometimes depend on language understanding at
the semantic and world-knowledge level. In addition, we built and evaluated
a system that returns descriptions where this relation is most likely to hold,
according to our model of the problem.

As a result, we might hypothesize that techniques we developed and ap-
plied here would be relevant for other ATI problems as well. For example,
could the text similarity function that we use for reranking in Chapter 7 be
re-tuned for the problem of recognizing textual entailment, or for passage
retrieval in question answering?

To answer these questions concretely in future work, we would follow the
steps outlined below.

1. Analyze differences in the data.

The task will now be to read in texts A and B and produce a deci-
sion about them, where the decision will be determined by the training
data that we select for the new problem. In the architecture shown
in Figure 7.2, pairwise decisions about the relationship between two
descriptions are made in the lower two-thirds of the diagram. The
SconeImage extension to Scone expects input in the form of a query
and a candidate list, and produces pairwise query description, candi-
date description features. As a result, the data format for a new prob-
lem could be massaged into a structure where there is only one text,
B, in the candidate list, while text A is formatted as the query. Some
massaging of the data into this format will be required. We must also
identify how ground-truth labels may be captured and attached for
training purposes.

2. Determine an appropriate baseline solution.

In Chapter 5 we described a baseline solution for image description
retrieval that relies on keyword features and was implemented using
the Lemur Information Retrieval Toolkit with the Indri Search Engine.
In the case of a new ATI task, a comparable baseline might be the
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combination of keyword-only features in a linear classifier, similar to
the solution that we implemented for the image retrieval problem.

3. Perform error analysis.

In Section 9.2.2, we described a candidate set of refined error classes.
At this step, we would depend on future work as outlined in that section
to establish a final error vocabulary. We would also have to modify the
method for selecting items to annotate, since our current description of
“most severe” errors depends on a ranked list as output, rather than a
binary decision. However the confidence score returned by the classifier
for miss-classified examples could be one factor in choosing items for
annotation.

4. Extend the KB and perform classifier training.

After annotating errors, we would use the annotation results to pop-
ulate a domain-specific KB, using the methods developed in Chapter
8. This process could help us answer some interesting questions em-
pirically: is it better to throw away the old domain-specific knowl-
edge base, or simply add to it? Does this extension require changes
to the upper-level knowledge bases? Does this method continue to
out-perform WordNet on the new task?

5. Test on held-out examples.

Finally, we would test on a development or testing set that appears in
a similar format to the training data. Because the decisions in this gen-
eral case are likely to be binary, MRR is inappropriate as an evaluation
metric, but accuracy, precision, recall, and combinations of these would
apply. For data sets where results have been published, we would apply
the metrics that are in current use, for comparable results.

While execution of these steps is reserved for future work, the exercise
of describing how to apply our system to other ATI data sets strengthens
the relevance of our work to concurrent research on tasks like recognizing
entailment.
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9.4 Conclusions

The experiments described in this thesis yield encouraging results with re-
spect to the hypotheses that we formed as a result of detailed error analysis
in Chapter 6. Specifically, textual inference techniques can lead to improved
retrieval performance, in particular on the most interesting types of images:
images with more visual content and less text than web buttons or logos,
and images whose descriptions can only be interpreted with the application
of ontological knowledge and inferential knowledge.

Statistically significant improvement was shown not only on the exam-
ples that were used for KB development, but also on the full set of training
queries from which these examples were drawn. Strong trends between this
result and a similar result on an unseen set of test queries encourage us to
continue exploring the effect on larger data sets, in the future. These trends
are a positive indication that knowledge-based techniques can complement
the strengths of a strong bag-of-words baseline to achieve better overall per-
formance on all image types.

The success of shared tasks for ATI in the last decade indicates growth
in the field of NLU, and in particular a growing interest in deep text rep-
resentations that can be leveraged by modern machine learning frameworks.
This observation was made after the first Recognizing Textual Entailment
Challenge, in 2005:

The fact that quite sophisticated inference levels were applied
by some groups, with 5 systems using logical provers, provide an
additional indication that applied NLP research is progressing to-
wards deeper semantic analyses. Further refinements are needed
though to obtain sufficient robustness for the Challenge types of
data. (Dagan et al., 2006)

The work of this thesis contributes to better understanding of why deep
representations are necessary, and how they may be effectively applied.
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Appendix A

Sample Parameter Files

<!--

Sample build_param file for the phetch 5A section, formatted as a

SconeImage sgml document (tags, descriptions, phrases) with

--!>

<parameters>

<index>/home/Projects/IR/indri_index/phetch-5A</index>

<corpus>

<path>/home/Projects/IR/indri_data/phetch-5A.sgml</path>

<class>trectext</class>

</corpus>

<memory>1G</memory>

<stemmer><name>krovetz</name></stemmer>

<field><name>tags</name></field>

<field><name>descriptions</name></field>

<field><name>description</name></field>

<field><name>phrase</name></field>

</parameters>
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Appendix B

Upper-level Ontology: DOLCE

;;; -*- Mode:Lisp -*-

;;; ***********************************************************************

;;; Scone Knowledge Representation System

;;;

;;;

;;; dolce-upper-kb.lisp:

;;; Dolce Upper Ontology, in Scone

;;;

;;;

;;; Adapted from the work of:

;;;

;;; Aldo Gangemi, Nicola Guarino, Claudio Masolo, and Alessandro Oltramari.

;;; Sweetening wordnet with dolce. AI Magazine, 24(3):13-24, 2003.

;;;

;;; Author: Alicia Tribble (atribble@cs.cmu.edu)

;;; ***********************************************************************

;;;

(in-namespace "dolce" :include "common")

;; Create a new root node for a parallel

;; hierarchy to the Scone Native types

(new-type {DOLCE-ROOT} {thing})
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(new-complete-split-subtypes {DOLCE-ROOT}

’(({abstract} :adj-noun)

({spatio-temporal-particular} :adj-noun)))

(new-complete-split-subtypes {spatio-temporal-particular}

’(({endurant} :adj-noun "endurant" "continuant")

({perdurant} :adj-noun "perdurant" "occurrence")

({quality} :adj-noun)

({physical-realization} :adj-noun "physical realization")))

;;; ROOT -> PARTICULAR -> ENDURANT ;;;

;; physical and non-physical endurants are disjoint

(new-split-subtypes {endurant}

’(({non-physical-endurant} "non-physical endurant" "non-physical continuant")

({physical-endurant} "physical endurant" "physical continuant")

({arbitrary-sum} :adj-noun)))

;; agent is an endurant that can have subclasses in common

;; with the other endurants

(new-type {agent} {endurant})

;; ENDURANT -> NON-PHYSICAL-ENDURANT ;;

(new-type {non-physical-object} {non-physical-endurant})

(new-complete-split-subtypes {non-physical-object}

’(({social-object})

({mental-object})))

;; ENDURANT -> NON-PHYSICAL-ENDURANT -> NON-PHYSICAL-OBJECT

;; -> SOCIAL-OBJECT
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(new-type {agentive-social-object} {social-object})

(new-type {figure} {social-object})

(new-type {non-agentive-social-object} {social-object})

;; NON-PHYSICAL-ENDURANT -> NON-PHYSICAL-OBJECT -> SOCIAL-OBJECT

;; -> FIGURE

(new-split-subtypes {figure}

’({non-agentive-figure}

{agentive-figure}))

;; NON-PHYSICAL-ENDURANT -> NON-PHYSICAL-OBJECT -> SOCIAL-OBJECT

;; -> AGENTIVE-SOCIAL-OBJECT ;;

(new-is-a {agentive-figure} {agentive-social-object})

(new-type {socially-constructed-person} {agentive-figure})

(new-split-subtypes {socially-constructed-person}

’({natural-person} {organization}))

(new-type {institution} {organization})

;; NON-PHYSICAL-ENDURANT -> NON-PHYSICAL-OBJECT -> SOCIAL-OBJECT

;; -> NON-AGENTIVE-SOCIAL-OBJECT ;;

(new-split-subtypes {non-agentive-social-object}

’({collection}

{concept}

{description}

{information-object}
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{situation}))

(new-is-a {non-agentive-figure} {non-agentive-social-object})

(new-split-subtypes {collection}

’({non-physical-collection}

{organized-collection}

{simple-collection}

{collective}))

(new-split-subtypes {concept}

’({course} {parameter} {role}))

(new-split-subtypes {description}

’({constitutive-description}

{information-encoding-system}

{method}

{modal-description}

{social-description}

{theory}

{narrative}

{subject}

{system-as-description}))

(new-split-subtypes {information-object}

’({creative-object}

{diagrammatic-object}

{formal-expression}

{iconic-object}

{linguistic-object}))

(new-type {non-physical-place} {non-agentive-figure})

(new-type {geographical-place} {non-physical-place})

(new-type {political-geographic-object} {geographical-place})

(new-type {country} {political-geographic-object})
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(new-split-subtypes {situation}

’({goal-situation}

{plan-execution}

{communication-situation}

{interpretation-situation}

{production-workflow-execution}

{system-as-situation}

))

;; ENDURANT -> NON-PHYSICAL-ENDURANT -> NON-PHYSICAL-OBJECT -> MENTAL-OBJECT ;;

;; ENDURANT -> PHYSICAL-ENDURANT ;;

(new-split-subtypes {physical-endurant}

’(({amount-of-matter})

;;; Amounts of matter are Endurants with no unity

;;;(none of them is an essential whole).

({physical-object})

;;; Physical Objects is that they are Endurants with unity.

({feature})

;;; Typical features are parasitic entities, such as holes, boundaries,

;;; surfaces, or stains, ... constantly dependent on physical Objects (their

;;; hosts).

))

;; ENDURANT -> PHYSICAL-ENDURANT -> AMOUNT-OF-MATTER ;;

(new-type {functional-matter} {amount-of-matter})
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;; ENDURANT -> PHYSICAL-ENDURANT -> FEATURE ;;

(new-split-subtypes {feature}

;; "A hole in a piece of cheese, a surface of a table"

’(({dependent-place})

;; "A relevant part of a host object,

;; like a bump or an edge"

({relevant-part})))

(new-type {spatial-feature} {relevant-part})

;; ENDURANT -> PHYSICAL-ENDURANT -> PHYSICAL-OBJECT ;;

;; agentive and non-agentive physical objects are disjoint

(new-split-subtypes {physical-object}

’(({agentive-physical-object})

({non-agentive-physical-object})))

;; other subclasses are not

(new-type {physical-plurality} {physical-object})

;; ENDURANT -> PHYSICAL-ENDURANT -> PHYSICAL-OBJECT

;; -> AGENTIVE-PHYSICAL-OBJECT ;;

(new-type {rational-physical-object} {agentive-physical-object})

;; ENDURANT -> PHYSICAL-ENDURANT -> PHYSICAL-OBJECT

;; -> NON-AGENTIVE-PHYSICAL-OBJECT ;;
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(new-split-subtypes {non-agentive-physical-object}

’({physical-body}

{physical-place}

{material-artifact}

))

;; physical-object -> non-agentive-physical-object -> physical-body

(new-split-subtypes {physical-body}

’({biological-object}

{chemical-object}

))

;; physical-object -> non-agentive-physical-object -> physical-place

(new-split-subtypes {physical-place}

’({geographical-object}

))

;; physical-object -> non-agentive-physical-object -> physical-artifact

;; ENDURANT -> AGENT ;;

;; The subtypes of edns:agent exhibit multiple inheritance

(new-is-a {agentive-physical-object} {agent})

(new-is-a {agentive-social-object} {agent})

(new-type {rational-agent} {agent})

(new-is-a {rational-physical-object} {rational-agent})

;;; ROOT -> PARTICULAR -> PERDURANT ;;;

(new-complete-split-subtypes {perdurant}

’(({event})

({stative})))
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;;; PERDURANT -> EVENT ;;;

;;; Eventive occurrences (events) are called achievements

;;; if they are atomic and accomplishments otherwise.

(new-type {accomplishment} {event})

(new-type {achievement} {event})

(new-type {cognitive-event} {event})

;; perdurant -> event -> accomplishment

(new-split-subtypes {accomplishment}

’({action}

{communication-event}

{phenomenon}))

;;; PERDURANT -> STATIVE ;;;

(new-complete-split-subtypes {stative}

’(({state})

({process})))

;; Subtypes of process

(new-type {flux} {process})

(new-type {reconstructed-flux} {flux})

;; Subtypes of state

(new-type {cognitive-state} {state})

(new-type {decision-state} {state})

;;; ROOT -> PARTICULAR -> QUALITY ;;;

;;; From "Sweetening WordNet with Dolce":

;;; Qualities can be seen as the basic entities we can perceive or
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;;; measure: shapes, colors, sizes, sounds, and

;;; smells as well as weights, lengths, electrical

;;; charges, and so on.

;;;

(new-split-subtypes {quality}

;;; Physical qualities are those that directly

;;; inhere to physical Endurants

’(({physical-quality})

;;; Temporal qualities are those that directly

;;; inhere to perdurants

({temporal-quality})

;;; Abstract qualities are those that directly

;;; inhere to nonphysical perdurants

({abstract-quality})))

;;; Attach the Qualitites to the Objects they describe

(new-type-role {physical-quality (role)}

{physical-endurant}

{physical-quality})

(new-type-role {temporal-quality (role)}

{perdurant}

{temporal-quality})

(new-type-role {abstract-quality (role)}

{non-physical-endurant}

{abstract-quality})

;; quality -> physical-quality

(new-type {spatial-location_q} {physical-quality})

;; quality -> temporal-quality

(new-type {temporal-location_q} {temporal-quality})
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;;; ROOT -> PARTICULAR -> PHYSICAL-REALIZATION ;;;

;; From the OWN kb comments, a Physical Realization is:

;; Any physical particular that realizes a non-physical endurant.

;; Such physical particulars can be either physical endurants,

;; physical qualities, physical regions, perdurants with at least

;; one physical participant, or a situation with one physical entity

;; in its setting.Ultimately, a physical realization depends on at

;; least one physical endurant (each of the others physical entity

;; types depend on a physical endurant to be considered as such)

(new-type {information-realization} {physical-realization})

(new-type {bodily-motion} {information-realization})

(new-type {depiction} {information-realization})

(new-type {voicing} {information-realization})

;;; ROOT -> ABSTRACT ;;;

(new-complete-split-subtypes {abstract}

’(({region})

({abstract-set})

({proposition})))

;; abstract -> region

(new-split-subtypes {region}

’({abstract-region}

{physical-region}

{quale}

{quality-space}

{temporal-region}

))
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Appendix C

Upper-level Ontology:
WN+DOLCE

;;; -*- Mode:Lisp -*-

;;; ***********************************************************************

;;; Scone Knowledge Representation System

;;;

;;;

;;; WN-dolce-upper-kb.lisp:

;;; Top-level WordNet Concepts, linked to the Scone-ified Dolce Upper Ontology

;;;

;;; Adapted from the work of:

;;;

;;; Aldo Gangemi, Nicola Guarino, Claudio Masolo, and Alessandro Oltramari.

;;; Sweetening wordnet with dolce. AI Magazine, 24(3):13-24, 2003.

;;;

;;; Author: Alicia Tribble (atribble@cs.cmu.edu)

;;; **********************************************************************

;;;

(in-namespace "dolce" :include "common")

(new-type {wordnet-type} {thing})
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;;; ROOT -> PARTICULAR -> ENDURANT ;;;

;; ENDURANT -> NON-PHYSICAL-ENDURANT -> NON-PHYSICAL-OBJECT -> SOCIAL-OBJECT;;

;; NON-PHYSICAL-ENDURANT -> NON-PHYSICAL-OBJECT -> SOCIAL-OBJECT -> FIGURE ;;

;; social-object -> figure -> non-agentive-figure

(new-type {philosophers_stone_n_1} {non-agentive-figure})

;; social-object -> figure -> agentive-figure

(new-split-subtypes {agentive-figure}

’({destiny_n_2}

{first_cause_n_1}

{imaginary_being_n_1}

{nature_n_3}

{organization_n_2}

{organized_crime_n_1}

{supernatural_n_1}

{vital_principle_n_1}

))

;; social-object -> figure -> non-agentive-figure -> non-physical-place

(new-split-subtypes {non-physical-place}

’({address_n_3}

{biogeographical_region_n_1}

{grave_n_1}

{imaginary_place_n_1}

{point_n_6}

{sign_of_the_zodiac_n_1}

))

;; social-object -> figure -> non-agentive-figure -> non-physical-place

;; -> geographical-place
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(new-split-subtypes {political-geographic-object}

’({district_n_1}))

;; NON-PHYSICAL-ENDURANT -> NON-PHYSICAL-OBJECT -> SOCIAL-OBJECT

;; -> AGENTIVE-SOCIAL-OBJECT

;; agentive-social-object -> socially-constructed-person -> person

(new-type {person_n_1} {socially-constructed-person})

(new-split-subtypes {person_n_1}

’({adult__grownup}

{child__baby}))

(new-split-subtypes {person_n_1}

’({female_n_1}

{male_n_1}))

(new-type {man_n_1} {male_n_1})

(new-type {male_child__boy__child} {male_n_1})

(new-type {woman_n_1} {female_n_1})

(new-type {female_child__girl__child} {female_n_1})

;; NON-PHYSICAL-ENDURANT -> NON-PHYSICAL-OBJECT -> SOCIAL-OBJECT

;; -> NON-AGENTIVE-SOCIAL-OBJECT

;; social-object -> non-agentive-social-object -> collection

(new-split-subtypes {collection}

’({art_collection_n_1}

{exhibition_n_2}

{group_n_1}

{repertoire_n_2}

{repertory_n_1}))
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;; social-object -> non-agentive-social-object -> concept

;; social-object -> non-agentive-social-object -> description

;; social-object -> non-agentive-social-object -> information-object

(new-split-subtypes {information-object}

’({language_unit_n_1}

{signal_n_1}

{message_n_1}))

;; social-object -> non-agentive-social-object -> signal_n_1

(new-type {symbol_n_1} {signal_n_1})

;; social-object -> non-agentive-social-object -> situation

;; social-object -> non-agentive-social-object -> non-agentive-figure

;;

;; duplicate parent, covered under

;; social-object -> figure -> non-agentive-figure

;; ENDURANT -> NON-PHYSICAL-ENDURANT -> NON-PHYSICAL-OBJECT

;; -> MENTAL-OBJECT

;; non-physical-object -> mental-object

(new-split-subtypes {mental-object}

’({cognition_n_1}

{mind_n_1}

{psychological_feature_n_1}))

;; ENDURANT -> PHYSICAL-ENDURANT ;;

;; An under-specifiec physical endurant

(new-type {entity_something_n_1} {physical-endurant})
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;; ENDURANT -> PHYSICAL-ENDURANT -> AMOUNT-OF-MATTER ;;

;; amount-of-matter

(new-split-subtypes {amount-of-matter}

’({atmosphere_n_1}

{chemical_element_n_1}

{compound_n_2}

{fluid_n_1}

{fluid_n_2}

{ice_n_1}

{land_ground_soil}

{mass_n_5}

{substance_n_1}

{substance_matter}

))

;; ENDURANT -> PHYSICAL-ENDURANT -> FEATURE ;;

;; feature -> relevant-part -> spatial-feature

(new-split-subtypes {spatial-feature}

’({air_n_3}

{back_n_3}

{base_n_5}

{bottom_n_1}

{boundary_n_2}

{centerline_n_1}

{depth_n_3}

{extremity_n_2}

{front_n_3}

{geological_formation_n_1}

{perimeter_n_1}

{side_n_7}

{surface_n_1}

{top_n_4}))
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;; feature -> dependent-place

(new-type {abutment_n_2} {dependent-place})

(new-type {antipodes_n_1} {dependent-place})

(new-type {blind_spot_n_1} {dependent-place})

(new-type {center_n_1} {dependent-place})

(new-type {corner_n_1} {dependent-place})

(new-type {corner_n_4} {dependent-place})

(new-type {crossing_n_3} {dependent-place})

(new-type {enclosure_n_1} {dependent-place})

(new-type {enclosure_n_3} {dependent-place})

(new-type {focus_n_1} {dependent-place})

;; i.e. the inside of something

(new-type {inside_n_2} {dependent-place})

(new-type {junction} {dependent-place})

(new-type {layer_n_3} {dependent-place})

;; "the left" i.e. left side of something

(new-type {left_n_1} {dependent-place})

(new-type {opening_n_3} {dependent-place})

(new-type {pass_n_4} {dependent-place})

(new-type {right_n_3} {dependent-place})

(new-type {space_n_4} {dependent-place})

(new-type {trichion_n_1} {dependent-place})

(new-type {vacuum_n_1} {dependent-place})

;; feature -> relevant-part

(new-type {belt_n_3} {relevant-part})

(new-type {connection_n_6} {relevant-part})

(new-type {corner_n_5} {relevant-part})

(new-type {covering_n_5} {relevant-part})

(new-type {curvature_n_2} {relevant-part})

(new-type {feature_n_1} {relevant-part})

(new-type {flare_n_2} {relevant-part})

(new-type {fragment_n_2} {relevant-part})

(new-type {head_n_8} {relevant-part})

(new-type {navel_n_1} {relevant-part})

(new-type {nub_n_1} {relevant-part})

(new-type {part_n_2} {relevant-part})
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(new-type {part_n_9} {relevant-part})

(new-type {segment_n_1} {relevant-part})

(new-type {slice_n_2} {relevant-part})

(new-type {strip_n_1} {relevant-part})

;; ENDURANT -> PHYSICAL-ENDURANT -> PHYSICAL-OBJECT ;;

;; physical-object -> object-physical-object

(new-type {object_n_1} {physical-object})

(new-type {artifact_n_1} {object_n_1})

(new-type {natural_object_n_1} {object_n_1})

;; physical-object -> physical-plurality

;; a.k.a. unitary collection in D18. The physical counterpart

;; (realization) of a collection. A collection (see) is

;; characterized by a conventional or emergent property.

;; Physical pluralities have as *proper parts* only physical

;; objects that are *members* of a same collection.

(new-split-subtypes {physical-plurality}

’({aviation_n_1}

{content_n_2}

{mail_n_3}

))

;; ENDURANT -> PHYSICAL-ENDURANT -> PHYSICAL-OBJECT

;; -> AGENTIVE-PHYSICAL-OBJECT

;; physical-object -> agentive-physical-object

(new-split-subtypes {agentive-physical-object}

’({automaton_n_1}

{autopilot_n_1}

{organism_n_1}
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{machine_n_1}

))

;; ENDURANT -> PHYSICAL-ENDURANT -> PHYSICAL-OBJECT

;; -> NON-AGENTIVE-PHYSICAL-OBJECT

;; physical-object -> non-agentive-physical-object

(new-split-subtypes {non-agentive-physical-object}

’({block_n_1}

{cocoon_n_1}

{consumer_goods_n_1}

{decoration_n_1}

{excavation_n_3}

{fixture_n_1}

{float_n_1}

{insert_n_2}

{line_n_2}

{marker_n_1}

{mechanism_n_2}

{nest_n_5}

{sqare_n_2}

{strip_n_2}

{way_n_2}

))

;; physical-object -> non-agentive-physical-object -> physical-body

;; -> biological-object

(new-split-subtypes {biological-object}

’({body_n_1}

{body_part_n_1}

{cell_n_1}

{plant_part_n_1}

))
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;; physical-object -> non-agentive-physical-object -> physical-body

;; -> chemical-object

(new-split-subtypes {chemical-object}

’({atom_n_1}

{group_n_2}

{molecule_n_1}

{unit_n_5}

))

;; PARTICULAR -> ENDURANT -> AGENT

;;

;; the agent instances are redundantly covered under

;; agentive-social-object and agentive-physical-object, above

;;

;;

;;; ROOT -> PARTICULAR -> PERDURANT ;;;

;;; PERDURANT -> EVENT ;;;

(new-type {contact_n_4} {event})

(new-type {crash_n_3} {event})

(new-type {creation_n_3} {event})

(new-type {discharge_n_1} {event})

(new-type {emergence_n_1} {event})

(new-type {event_n_1} {event})

(new-type {fire_n_2} {event})

(new-type {flash_n_2} {event})

(new-type {movement_n_14} {event})

(new-type {social_event_n_1} {event})

(new-type {sound_n_2} {event})

(new-type {thing_n_8} {event})

(new-type {union_n_2} {event})

;; perdurant -> event -> cognitive-event
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(new-split-subtypes {cognitive-event}

’({feeling_n_1}

{motivation_n_1}

{process_n_2}

{process_n_4}

))

;; perdurant -> event -> accomplishment

;; perdurant -> event -> accomplishment -> action

;; perdurant -> event -> accomplishment -> communication-event

;; perdurant -> event -> accomplishment -> phenomenon

;;; PERDURANT -> STATIVE ;;;

;; perdurant -> stative -> state

(new-split-subtypes {state}

’({hyalinization_n_1}

{isomerism_n_1}

{motionlessness_n_1}

{psychological_state_n_1}

{serration_n_3}

{tilth_n_1}

{turgor_n_1}

{wetness_n_1}))

;; perdurant -> stative -> state -> cognitive-state

(new-type {cognitive_state_n_1} {cognitive-state})

;; perdurant -> stative -> process
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;;; ROOT -> PARTICULAR -> QUALITY ;;;

;; quality -> property

(new-type {property_n_2} {quality})

;; quality -> quality

(new-type {quality_n_3} {quality})

(new-type {texture_n_4} {quality_n_3})

;; quality -> thing

(new-type {thing_n_4} {quality})

;;; ROOT -> PARTICULAR -> QUALITY -> ABSTRACT-QUALITY ;;;

(new-split-subtypes {abstract-quality}

’({analyticity_n_1}

{disposition_n_1}

{manner_n_1}

{personality_n_1}

{quality_n_1}

{selectivity_n_1}

{trait_n_1}

))

;;; ROOT -> PARTICULAR -> QUALITY -> PHYSICAL-QUALITY ;;;

;;; Physical Qualities are Qualities that inhere to Physical Objects

(new-split-subtypes {physical-quality}

’({actinism_n_1}

{blob_n_1}

{bodily_property_n_1}

{consistency_n_1}
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{constitution_n_4}

{distortion_n_2}

{edibility_n_1}

{heredity_n_1}

{natural_shape_n_1}

{newness_n_1}

{oldness_n_1}

{oldness_n_2}

{olfactory_property_n_2}

{physical_property_n_1}

{saltiness_n_1}

{shape_n_1}

{spatial_property_n_1}

{stainability_n_1}

{strength_n_1}

{tactile_property_n_1}

{taste_property_n_1}

{viability_n_1}

{visual_property_n_1}

{weakness_n_1}

{youngness_n_1}

))

(new-split-subtypes {visual_property_n_1}

’({color_n_1}

{color_property_n_1}

{colorlessness_n_1}

{dullness_n_3}

{lightness_n_5}

{texture_n_2}

;; added by atribble, not in OWN.owl

{softness_n_6}

))

(new-type {chromatic_color_n_1} {color_n_1})

(new-type {achromatic_color_n_1} {color_n_1})
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(new-type {position__place} {spatial-location_q})

;;; ROOT -> PARTICULAR -> QUALITY -> TEMPORAL-QUALITY ;;;

(new-split-subtypes {temporal-quality}

’({age_n_1}

{sound_property_n_1}

{temporal_property_n_1}

))

;;; ROOT -> PARTICULAR -> QUALITY -> PROPERTY ;;;

;;; ROOT -> PARTICULAR -> PHYSICAL-REALIZATION ;;;

;; physical-realization -> information-realization

(new-type {auditory_communication_n_1} {information-realization})

(new-type {brochure_n_1} {information-realization})

(new-type {creation_n_2} {information-realization})

(new-type {sign_n_1} {information-realization})

(new-type {visual_communication_n_1} {information-realization})

(new-type {written_communication_n_1} {information-realization})

;; physical-realization -> information-realization

;; -> visual_communication_n_1

(new-split-subtypes {visual_communication_n_1}

’({artwork_n_1}

{body_language_n_1}

{demonstration_n_1}

{display_n_2}

{gesture_n_1}

{projection_n_3}

{video_n_1}

))
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;; physical-realization -> information-realization

;; -> written_communication_n_1

(new-split-subtypes {written_communication_n_1}

’({code_n_1}

{correspondence_n_2}

{prescription_n_1}

{prescription_n_2}

{print_n_1}

{reading_n_2}

{transcription_n_1}

{writing_4}

{writing_2}

))

;;; ROOT -> ABSTRACT ;;;

;; abstract -> region

(new-split-subtypes {region}

’({attribute_n_1}

{magnitude_n_1}

{measure_n_4}

{measure_n_2}

))

;; abstract -> region -> magnitude

(new-split-subtypes {magnitude_n_1}

’({amount_n_1}

{amplitude_n_1}

{bulk_n_1}

{degree_n_1}

{extent_n_1}

{muchness_n_1}

{multiplicity_n_1}

{order_n_2}

{proportion_n_1}
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{size_n_2}

{size_n_3}

))

;; abstract -> region -> magnitude -> size_n_2

(new-split-subtypes {size_n_2}

’({circumference_n_1}

{largeness_n_3}

{smallness_n_1}

))

;; abstract -> set

(new-split-subtypes {abstract-set}

’({set_n_5}))

;; abstract -> proposition

;; No subtypes as of 01/05/2010


